Abstract
The paper addresses the problem of stabilizing self-tuning systems using adaptive control methods based on a reference process model. As the optimality criterion, the functional of maximum speed of response is selected. The algorithm for synthesizing the self-tuning system is based on a relay-linear control law, which possesses the property of invariance to small disturbances. The issue of ensuring the practical stability of the system under adaptive and multiplicative disturbances is examined. An algorithm for the synthesis of a reference trajectory stabilization system has been developed on the basis of a quasi-optimal passive self-tuning system (STS) with a reference model, which meets the imposed requirements.
First Page
39
Last Page
42
References
- Sastry, S., & Bodson, M. Adaptive control: Stability, convergence and robustness. Prentice Hall, Englewood Cliffs, NJ, USA, 1989. URL: https://flyingv.ucsd.edu/krstic/teaching/282/sastry_bodson_adaptive_control.pdf
- Utkin, V. I. Sliding modes in control and optimization. Springer-Verlag, Berlin–Heidelberg, Germany, 1992. DOI: https://doi.org/10.1007/978-3-642-84379-2
- Siddikov, I., Khalmatov, D., Alimova, G., Khujanazarov, U., Sadikova, F., & Usanov, M. Investigation of auto-oscillational regimes of the system by dynamic nonlinearities // International Journal of Electrical and Computer Engineering, 2024, Vol. 14, No. 1, pp. 230–238. DOI: https://doi.org/10.11591/ijece.v14i1.pp230-238
- Астахов, А. В., & Цыкунов, А. М. Адаптивные системы управления с эталонной моделью. Москва: Наука, 1987. URL: https://elibrary.ru/item.asp?id=32456747
- Khalil, H. K. Nonlinear systems. Prentice Hall, Upper Saddle River, NJ, USA, 2002. URL: https://users.ece.msu.edu/users/khalil/NonlinearSystems.pdf
- Ioannou, P. A., & Sun, J. Robust adaptive control. Prentice Hall, Upper Saddle River, NJ, USA, 1996. URL: https://flyingv.ucsd.edu/krstic/teaching/282/ioannousun.pdf
- Narendra, K. S., & Annaswamy, A. M. Stable adaptive systems. Prentice Hall, Englewood Cliffs, NJ, USA, 1989. URL: https://web.mit.edu/6.245/www/Adaptive_Control.pdf
- Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., & Mishchenko, E. F. The mathematical theory of optimal processes. Pergamon Press, Oxford, UK, 1962. URL: https://www.mathnet.ru/eng/mmmp66
- Fradkov, A. L. Cybernetical physics: From control of chaos to quantum control. Springer, Berlin–Heidelberg, Germany, 2007. DOI: https://doi.org/10.1007/978-3-540-72722-7
Recommended Citation
Sidikov, Isamidin Hakimovich and Sodiqova, Feruzakhon Botirxon qizi
(2025)
"ALGORITHM FOR STABILIZING THE REFERENCE TRAJECTORY OF SELF-TUNING SYSTEMS WITH A REFERENCE MODEL,"
Technical science and innovation: Vol. 2025:
Iss.
4, Article 7.
DOI: https://doi.org/10.59048/2181-1180.1762
Available at:
https://btstu.researchcommons.org/journal/vol2025/iss4/7