•  
  •  
 

Abstract

The paper addresses the problem of stabilizing self-tuning systems using adaptive control methods based on a reference process model. As the optimality criterion, the functional of maximum speed of response is selected. The algorithm for synthesizing the self-tuning system is based on a relay-linear control law, which possesses the property of invariance to small disturbances. The issue of ensuring the practical stability of the system under adaptive and multiplicative disturbances is examined. An algorithm for the synthesis of a reference trajectory stabilization system has been developed on the basis of a quasi-optimal passive self-tuning system (STS) with a reference model, which meets the imposed requirements.

First Page

39

Last Page

42

References

  1. Sastry, S., & Bodson, M. Adaptive control: Stability, convergence and robustness. Prentice Hall, Englewood Cliffs, NJ, USA, 1989. URL: https://flyingv.ucsd.edu/krstic/teaching/282/sastry_bodson_adaptive_control.pdf
  2. Utkin, V. I. Sliding modes in control and optimization. Springer-Verlag, Berlin–Heidelberg, Germany, 1992. DOI: https://doi.org/10.1007/978-3-642-84379-2
  3. Siddikov, I., Khalmatov, D., Alimova, G., Khujanazarov, U., Sadikova, F., & Usanov, M. Investigation of auto-oscillational regimes of the system by dynamic nonlinearities // International Journal of Electrical and Computer Engineering, 2024, Vol. 14, No. 1, pp. 230–238. DOI: https://doi.org/10.11591/ijece.v14i1.pp230-238
  4. Астахов, А. В., & Цыкунов, А. М. Адаптивные системы управления с эталонной моделью. Москва: Наука, 1987. URL: https://elibrary.ru/item.asp?id=32456747
  5. Khalil, H. K. Nonlinear systems. Prentice Hall, Upper Saddle River, NJ, USA, 2002. URL: https://users.ece.msu.edu/users/khalil/NonlinearSystems.pdf
  6. Ioannou, P. A., & Sun, J. Robust adaptive control. Prentice Hall, Upper Saddle River, NJ, USA, 1996. URL: https://flyingv.ucsd.edu/krstic/teaching/282/ioannousun.pdf
  7. Narendra, K. S., & Annaswamy, A. M. Stable adaptive systems. Prentice Hall, Englewood Cliffs, NJ, USA, 1989. URL: https://web.mit.edu/6.245/www/Adaptive_Control.pdf
  8. Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., & Mishchenko, E. F. The mathematical theory of optimal processes. Pergamon Press, Oxford, UK, 1962. URL: https://www.mathnet.ru/eng/mmmp66
  9. Fradkov, A. L. Cybernetical physics: From control of chaos to quantum control. Springer, Berlin–Heidelberg, Germany, 2007. DOI: https://doi.org/10.1007/978-3-540-72722-7

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.