•  
  •  
 

Abstract

This article describes the classification of exoskeletons. This classification is based on the use of exoskeletons in the medical field, shape, power source, generation, parts related to the human body, structural material, and control forms based on sensor and actuator devices. In addition, examples of each category are given. The main goal is to comprehensively evaluate medical exoskeletons, pay special attention to their functions and goals, conduct scientific research, and further develop these devices. As a result, a completely new type of classification of medical exoskeletons was developed. The developed new type of classification serves as an important guide in selecting objects for further scientific research and using them for scientific research purposes. According to the results of scientific analysis, exoskeletons of a fixed form for patients with limited lower limb mobility were selected as the object of scientific activity. This careful selection process considers various important criteria, such as the complexity of their control strategies, the types of actuators they use, the range of integrated sensors, and the quality of their mechanical components. These carefully selected exoskeletons will serve as the objects of our future scientific research activities.

First Page

5

Last Page

13

References

  1. Yao Y, Shao D, Tarabini M, Moezi SA, Li K, Saccomandi P. Advancements in Sensor Technologies and Control Strategies for Lower-Limb Rehabilitation Exoskeletons: A Comprehensive Review. Micromachines (Basel). 2024 Apr 2;15(4):489. doi: 10.3390/mi15040489.
  2. Gavrila Laic RA, Firouzi M, Claeys R, Bautmans I, Swinnen E, Beckwée D. A State-of-the-Art of Exoskeletons in Line with the WHO's Vision on Healthy Aging: From Rehabilitation of Intrinsic Capacities to Augmentation of Functional Abilities. Sensors (Basel). 2024 Mar 30;24(7):2230. doi: 10.3390/s24072230.
  3. Exoskeleton Reports. https://exoskeletonreport.com/product-category/exoskeleton-catalog/. Available: 29.09.2024.
  4. He Y, Xu Y, Hai M, Feng Y, Liu P, Chen Z, Duan W. Exoskeleton-Assisted Rehabilitation and Neuroplasticity in Spinal Cord Injury. World Neurosurg. 2024 May; 185:45-54. doi: 10.1016/j.wneu.2024.01.167.
  5. Sherif O, Bassuoni MM, Mehrez O. A survey on the state of the art of force myography technique (FMG): analysis and assessment. Med Biol Eng Comput. 2024 May;62(5):1313-1332. doi:10.1007/s11517-024-03019-w.
  6. Flor-Unda O, Casa B, Fuentes M, Solorzano S, Narvaez-Espinoza F, Acosta-Vargas P. Exoskeletons: Contribution to Occupational Health and Safety. Bioengineering (Basel). 2023 Sep 4;10(9):1039. doi: 10.3390/bioengineering10091039.
  7. Li B, Cunha AB, Lobo MA. Effectiveness and Users' Perceptions of Upper Extremity Exoskeletons and Robot-Assisted Devices in Children with Physical Disabilities: Systematic Review. Phys Occup Ther Pediatr. 2024;44(3):336-379. doi: 10.1080/01942638.2023.2248241.
  8. Höhler C, Trigili E, Astarita D, Hermsdörfer J, Jahn K, Krewer C. The efficacy of hybrid neuroprostheses in the rehabilitation of upper limb impairment after stroke, a narrative and systematic review with a meta-analysis. Artif Organs. 2024 Mar;48(3):232-253. doi: 10.1111/aor.14618.
  9. Sam RY, Lau YFP, Lau Y, Lau ST. Types, functions and mechanisms of robot-assisted intervention for fall prevention: A systematic scoping review. Arch Gerontol Geriatr. 2023 Dec; 115:105117. doi: 10.1016/j.archger.2023.105117.
  10. Kuber PM, Alemi MM, Rashedi E. A Systematic Review on Lower-Limb Industrial Exoskeletons: Evaluation Methods, Evidence, and Future Directions. Ann Biomed Eng. 2023 Aug;51(8):1665-1682. doi: 10.1007/s10439-023-03242-w.
  11. Ang BWK, Yeow CH, Lim JH. A Critical Review on Factors Affecting the User Adoption of Wearable and Soft Robotics. Sensors (Basel). 2023 Mar 20;23(6):3263. doi: 10.3390/s23063263.
  12. Wang D, Gu X, Yu H. Sensors and algorithms for locomotion intention detection of lower limb exoskeletons. Med Eng Phys. 2023 Mar; 113:103960. doi: 10.1016/j.medengphy.2023.103960.
  13. Neťuková S, Bejtic M, Malá C, Horáková L, Kutílek P, Kauler J, Krupička R. Lower Limb Exoskeleton Sensors: State-of-the-Art. Sensors (Basel). 2022 Nov 23;22(23):9091. Doi: 10.3390/s22239091.
  14. Warutkar V, Dadgal R, Mangulkar UR. Use of Robotics in Gait Rehabilitation Following Stroke: A Review. Cureus. 2022 Nov 4;14(11):e31075. doi: 10.7759/cureus.31075.
  15. Fu J, Choudhury R, Hosseini SM, Simpson R, Park JH. Myoelectric Control Systems for Upper Limb Wearable Robotic Exoskeletons and Exosuits-A Systematic Review. Sensors (Basel). 2022 Oct 24;22(21):8134. doi: 10.3390/s22218134.
  16. Slucock T. A Systematic Review of Low-Cost Actuator Implementations for Lower-Limb Exoskeletons: a Technical and Financial Perspective. J Intell Robot Syst. 2022;106(1):3. doi: 10.1007/s10846-022-01695-0.
  17. Padfield N, Camilleri K, Camilleri T, Fabri S, Bugeja M. A Comprehensive Review of Endogenous EEG-Based BCIs for Dynamic Device Control. Sensors (Basel). 2022 Aug 3;22(15):5802. doi: 10.3390/s22155802.
  18. Bardi E, Gandolla M, Braghin F, Resta F, Pedrocchi ALG, Ambrosini E. Upper limb soft robotic wearable devices: a systematic review. J Neuroeng Rehabil. 2022 Aug 10;19(1):87. doi: 10.1186/s12984-022-01065-9.
  19. Rodriguez Tapia G, Doumas I, Lejeune T, Previnaire JG. Wearable powered exoskeletons for gait training in tetraplegia: a systematic review on feasibility, safety and potential health benefits. Acta Neurol Belg. 2022 Oct;122(5):1149-1162. doi: 10.1007/s13760-022-02011-1.
  20. Tang X, Wang X, Ji X, Zhou Y, Yang J, Wei Y, Zhang W. A Wearable Lower Limb Exoskeleton: Reducing the Energy Cost of Human Movement. Micromachines (Basel). 2022 Jun 6;13(6):900. doi: 10.3390/mi13060900.
  21. Moeller T, Krell-Roesch J, Woll A, Stein T. Effects of Upper-Limb Exoskeletons Designed for Use in the Working Environment-A Literature Review. Front Robot AI. 2022 Apr 29;9:858893. Doi: 10.3389/frobt.2022.858893.
  22. Tamburella F, Lorusso M, Tramontano M, Fadlun S, Masciullo M, Scivoletto G. Overground robotic training effects on walking and secondary health conditions in individuals with spinal cord injury: systematic review. J Neuroeng Rehabil. 2022 Mar 15;19(1):27. doi: 10.1186/s12984-022-01003-9.
  23. McDevitt S, Hernandez H, Hicks J, Lowell R, Bentahaikt H, Burch R, Ball J, Chander H, Freeman C, Taylor C, Anderson B. Wearables for Biomechanical Performance Optimization and Risk Assessment in Industrial and Sports Applications. Bioengineering (Basel). 2022 Jan 13;9(1):33. doi: 10.3390/bioengineering9010033.
  24. Dalla Gasperina S, Roveda L, Pedrocchi A, Braghin F, Gandolla M. Review on Patient-Cooperative Control Strategies for Upper-Limb Rehabilitation Exoskeletons. Front Robot AI. 2021 Dec 7;8:745018. Doi: 10.3389/frobt.2021.745018.
  25. Sarajchi M, Al-Hares MK, Sirlantzis K. Wearable Lower-Limb Exoskeleton for Children With Cerebral Palsy: A Systematic Review of Mechanical Design, Actuation Type, Control Strategy, and Clinical Evaluation. IEEE Trans Neural Syst Rehabil Eng. 2021;29:2695-2720. doi: 10.1109/TNSRE.2021.3136088.
  26. Ali A, Fontanari V, Schmoelz W, Agrawal SK. Systematic Review of Back-Support Exoskeletons and Soft Robotic Suits. Front Bioeng Biotechnol. 2021 Nov 2;9:765257. Doi: 10.3389/fbioe.2021.765257.
  27. Hoffmann N, Prokop G, Weidner R. Methodologies for evaluating exoskeletons with industrial applications. Ergonomics. 2022 Feb;65(2):276-295. doi: 10.1080/00140139.2021.1970823.
  28. Baud R, Manzoori AR, Ijspeert A, Bouri M. Review of control strategies for lower-limb exoskeletons to assist gait. J Neuroeng Rehabil. 2021 Jul 27;18(1):119. doi: 10.1186/s12984-021-00906-3.
  29. Bessler J, Prange-Lasonder GB, Schulte RV, Schaake L, Prinsen EC, Buurke JH. Occurrence and Type of Adverse Events During the Use of Stationary Gait Robots Systematic Literature Review. Front Robot AI. 2020 Nov 16;7:557606. Doi: 10.3389/frobt.2020.557606.
  30. Mak SKD, Accoto D. Review of Current Spinal Robotic Orthoses. Healthcare (Basel). 2021 Jan 13;9(1):70. doi: 10.3390/healthcare9010070.
  31. Zheng L, Lowe B, Hawke AL, Wu JZ. Evaluation and Test Methods of Industrial Exoskeletons In Vitro, Vivo, and Silico: A Critical Review. Crit Rev Biomed Eng. 2021;49(4):1-13. doi: 10.1615/CritRevBiomedEng.2022041509.
  32. Thalman C, Artemiadis P. A review of soft wearable robots that provide active assistance: Trends, standard actuation methods, fabrication, and applications. Wearable Technol. 2020 Sep 14;1:e3. Doi 10.1017/wtc.2020.4.
  33. Jamwal PK, Hussain S, Ghayesh MH. Robotic orthoses for gait rehabilitation: An overview of mechanical design and control strategies. Proc Inst Mech Eng H. 2020 May;234(5):444-457. doi: 10.1177/0954411919898293.
  34. Khan SM, Khan AA, Farooq O. Selection of Features and Classifiers for EMG-EEG-Based Upper Limb Assistive Devices-A Review. IEEE Rev Biomed Eng. 2020;13:248-260. doi: 10.1109/RBME.2019.2950897.
  35. Mubin O, Alnajjar F, Jishtu N, Alsinglawi B, Al Mahmud A. Exoskeletons With Virtual Reality, Augmented Reality, and Gamification for Stroke Patients' Rehabilitation: Systematic Review. JMIR Rehabil Assist Technol. 2019 Sep 8;6(2):e12010. doi: 10.2196/12010.
  36. He Y, Eguren D, Luu TP, Contreras-Vidal JL. Risk management and regulations for lower limb medical exoskeletons: a review. Med Devices (Auckl). 2017 May 9;10:89-107. doi: 10.2147/MDER.S107134.
  37. Roots Analysis. Medical Exoskeleton Market. https://www.rootsanalysis.com/reports/medical-exoskeleton-market.html, Available: 29.09.2024.
  38. Rakhmatillaev, J., Bucinskas, V., Juraev, Z., Kimsanboev, N., & Takabaev, U. (2024b). A recent lower limb exoskeleton robot for gait rehabilitation: a review. Robotic Systems and Applications. https://doi.org/10.21595/rsa.2024.24662
  39. Rakhmatillaev, J., Bucinskas, V., & Kabulov, N. (2025). An integrative review of control strategies in robotics. Robotic Systems and Applications. https://doi.org/10.21595/rsa.2025.25014

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.