•  
  •  
 

Abstract

This article explores the applicability of diverse sensor types—such as optical, magnetic incremental encoder and potentiometric sensors—for controlling the turning angle of tractor steering wheels, specifically addressing the control challenges faced by semi-mounted cotton pickers. The discussion encompasses fundamental principles, operational aspects, advantages, and limitations of turning angle sensors prevalent in the industry. Emphasizing advancements in sensor technology, the article recommends sensor options for controlling the steering wheel's turning angle, crucial for enhanced maneuverability and operational efficiency of semi-mounted cotton pickers. Various sensor types, including optical and magnetic encoders and potentiometers, are evaluated for their suitability in this context. Optical encoders, for instance, are detailed regarding their ability to convert rotational movements into digital signals and their classification into incremental and absolute types. The merits and limitations of each sensor type—such as the narrow control range of incremental encoders and the advantages of absolute encoders—are systematically analyzed. Furthermore, the potential use of magnetic encoders, based on the Hall effect, is explored, highlighting their reliability and suitability for controlling rotation speeds. The article concludes by recommending sensor options based on their effectiveness in converting turning angles into electrical signals, offering insights into optimal choices for controlling the tractor's steering wheel angle in cotton pickers.

First Page

42

Last Page

47

References

  1. Matchanov, R., Rizayev, A., Astanakulov, K., Tolibaev, A., & Karimov, N. (2021). Combined cotton picker with interchangeable devices. IOP Conference Series: Earth and Environmental Science, 677, 052021. https://doi.org/10.1088/1755-1315/677/5/052021
  2. Uljaev, E. U., & Ubaydullaev, U. M. (2018). Cotton picker’s spindle speed control by measuring sensoe frequency. Chemical Technology, Control and Management, 2018(2), 37–42.
  3. Khanpara, B., & Kathiria, R. (2023). Development and performance evaluation of picking mechanism for knapsack cotton picker. INTERNATIONAL JOURNAL OF AGRICULTURAL SCIENCES, 19, 145–152. https://doi.org/10.15740/HAS/IJAS/19.1/145-152
  4. Эркин Улжаев, Уткиржон Убайдуллаев, Султонбек Эркинов, & Собир Шеркобилов. (2014). Автоматизированное устройство контроля забои е давления воздуха в пневмотранспортной камерСборник материалов Inхлопкоуборочной машины. технической конференции на -международной научнотему: “Современные материалы, техника и технологии 1. -20 апреля 2014 года. Том-в машиностроении” 19Андижан.
  5. Uljayev, E., Ravutov, S. T., & Ubaydullayev, U. M. (2020). Remote control device to control the contact uniformity of the brush strippers on the spindle’s surface of the cotton picking apparatus. In IOP Conference Series: Earth and Environmental Science (Vol. 614, p. 012139). IOP Publishing.
  6. Chen, H., Wang, M., Ni, X., Cai, W., Zhong, C., Ye, H., … Lin, Y. (2023). Design of Hydrostatic Power Shift Compound Drive System for Cotton Picker Experiment. Agriculture, 13, 1591. https://doi.org/10.3390/agriculture13081591
  7. Liu, Z., & Zhang, L. (2020). A review of failure modes, condition monitoring and fault diagnosis methods for large-scale wind turbine bearings. Measurement, 149, 107002. https://doi.org/10.1016/j.measurement.2019.107002
  8. Bertolotti, F., Sbonnik, S., & Sumbeck, T. (2014, September 9). Angular position encoder for a rotating shaft.
  9. Ulzhayev, E., Ubaydullayev, U. M., & Ulzhayev, Z. E. (2014). Electronic on-board control system of operational and technological parameters of cotton harvesting units. Traktory i sel hozmashiny, 81(10), 11–14.
  10. Barros, T., Lins, I., & Moura, M. (2023). Deep Learning Models Applied to Intelligent Diagnosis of Rotating Machines.
  11. Liu, Y., Chen, B., & Chang, J. (2015). Development of polarity-changeable magnetizer for manufacturing coding patterns in rotary encoder. https://doi.org/10.1109/INTMAG.2015.7157742
  12. Улжаев, Э., Убайдуллаев, У., & Абдулхамидов, А. (2021). Выбор способов и датчиков контроля изменения ширины между перемещающими объектов. InterConf.
  13. Gao, X., & Zhang, X. (2022). A Multivector Variable Area Type Capacitive Angular Displacement Encoder Based on a Rotating Electric Field and Improvement of Its Demodulation Method. IEEE Sensors Journal, PP, 1–1. https://doi.org/10.1109/JSEN.2022.3200099
  14. Абдазимов, А. Д., Улжаев, Э., Убайдуллаев, У. М., & Омонов, Н. Н. (2014). Основы автоматизации контроля и управления технологическими параметрами хлопкоуборочных машин. Ташкент: ТашГТУ.
  15. Эркин Улжаев, Уткиржон Убайдуллаев, & Тоштемир Авезов. (2014). Микропроцессорное устройство контроля угла поворота ведущего колеса сельхозмашин. In Сборник материалов международной научно-технической конференции на тему: “Современные материалы, техника и технологии в машиностроении” 19-20 апреля 2014 года. Том-1. Presented at the Сборник материалов международной научно-технической конференции на тему: “Современные материалы, техника и технологии в машиностроении” 19-20 апреля 2014 года. Том-1., Андижан.
  16. Ellin, A., & Dolsak, G. (2008). The design and application of rotary encoders. Sensor Review, 28, 150–158. https://doi.org/10.1108/02602280810856723
  17. Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., & Siegel, D. (2014). Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications. Mechanical Systems and Signal Processing, 42(1), 314–334. https://doi.org/10.1016/j.ymssp.2013.06.004

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.