•  
  •  
 

Abstract

An overview of current developments in biochar application in water and wastewater treatment is given in this article, along with a brief explanation of the sorption mechanisms for removing contaminants and the techniques for biochar preparation. In order to encourage the continued use of biochar in effective water and wastewater treatment, future research directions and environmental concerns about biochar are also presented.

First Page

19

Last Page

31

References

  1. Rashed, Mohamed Nageeb. (2013). Adsorption technique for the removal of organic pollutants from water and wastewater. Organic Pollutants-Monitoring, Risk and Treatment. 167-194.
  2. Bello, Mustapha & Raman, Abdul. (2018). Adsorption and Oxidation Techniques to Remove Organic Pollutants from Water. 10.1007/978-3-319-92111-2_8.
  3. Grégorio Crini, Eric Lichtfouse, Lee Wilson, Nadia Morin-Crini. Adsorption-oriented processes using conventional and non-conventional adsorbents for wastewater treatment. Green Adsorbents for Pollutant Removal, 18, Springer Nature, pp.23-71, 2018, Environmental Chemistry for a Sustainable World, 978-3-319-92111-2. ff10.1007/978-3-319-92111-2_2ff. ffhal-02065600f
  4. Ivancev-Tumbas I, Landwehrkamp L, Hobby R, Vernillo M, Panglisch S. Adsorption of organic pollutants from the aqueous phase using graphite as a model adsorbent. Adsorption Science & Technology. 2020;38(7-8):286-303. doi:10.1177/0263617420945847
  5. Rashed, Mohamed. "Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater". Organic Pollutants - Monitoring, Risk and Treatment, edited by M. Rashed, IntechOpen, 2013. 10.5772/54048.
  6. Solangi, N. H., Kumar, J., Mazari, S. A., Ahmed, S., Fatima, N., & Mubarak, N. M. (2021). Development of fruit waste derived bio-adsorbents for wastewater treatment: A review. Journal of Hazardous Materials, 416, 125848. doi:10.1016/j.jhazmat.2021.125848
  7. Pathak, Pranav & Mandavgane, Sachin & Kulkarni, Bhaskar. (2015). Fruit peel waste as a novel low-cost bio adsorbent. Reviews in Chemical Engineering. 31. 361-381. 10.1515/revce-2014-0041.
  8. Talib, Norfahana & Chuo, Sing Chuong & Mohd-Setapar, Siti & Asli, Umi & Pa'ee, Khairul & Yong, Kelly. (2020). Trends in Adsorption Mechanisms of Fruit Peel Adsorbents to Remove Wastewater Pollutants (Cu (II), Cd (II) and Pb (II)). Journal of Water and Environment Technology. 18. 290-313. 10.2965/jwet.20-004.
  9. Campos-Flores, G., Castillo-Herrera, A., Gurreonero-Fernández, J., Obeso-Obando, A., Díaz-Silva, V., & Vejarano, R. (2018). Adsorbent material based on passion-fruit wastes to remove lead (Pb), chromium (Cr) and copper (Cu) from metal-contaminated waters. doi:10.1063/1.5032041
  10. Sousa, F. W., Oliveira, A. G., Ribeiro, J. P., Rosa, M. F., Keukeleire, D., & Nascimento, R. F. (2010). Green coconut shells applied as adsorbent for removal of toxic metal ions using fixed-bed column technology. Journal of Environmental Management, 91(8), 1634–1640. doi:10.1016/j.jenvman.2010.02.011
  11. Chandana, L. & Killi, Krushnamurty & Duvvuri, Suryakala & Challapalli, Subrahmanyam. (2019). Low-cost adsorbent derived from the coconut shell for the removal of hexavalent chromium from aqueous medium. Materials Today: Proceedings. 26. 10.1016/j.matpr.2019.04.205.
  12. Oribayo, O & Olaleye, Oluwafunke & Akinyanju, A & Omoloja, Kehinde & Williams, S. (2020). Coconut shell-based activated carbon as adsorbent for the removal of dye from aqueous solution: equilibrium, kinetics, and thermodynamic studies. 10.4314/njt.v39i4.14.
  13. Romer, Isabel et al. "Coconut Shell Charcoal Adsorption to Remove Methyl Orange in Aqueous Solutions". Sorption - From Fundamentals to Applications [Working Title], edited by George Kyzas, IntechOpen, 2022. 10.5772/intechopen.102898.
  14. Li, L., Liu, S., & Zhu, T. (2010). Application of activated carbon derived from scrap tires for adsorption of Rhodamine B. Journal of Environmental Sciences, 22(8), 1273–1280. doi:10.1016/s1001-0742(09)60250-3
  15. Islam, M. T., Saenz-Arana, R., Hernandez, C., Guinto, T., Ahsan, M. A., Bragg, D. T., … Noveron, J. C. (2018). Conversion of waste tire rubber into a high-capacity adsorbent for the removal of methylene blue, methyl orange, and tetracycline from water. Journal of Environmental Chemical Engineering, 6(2), 3070–3082. doi:10.1016/j.jece.2018.04.058
  16. K. Mogolodi Dimpe, J. Catherine Ngila & Philiswa N. Nomngongo | Xiaoliang Wei (Reviewing Editor) (2017) Application of waste tyre-based activated carbon for the removal of heavy metals in wastewater, Cogent Engineering, 4:1, DOI: 10.1080/23311916.2017.1330912
  17. Ighalo, J. O., & Adeniyi, A. G. (2020). Adsorption of pollutants by plant bark derived adsorbents: An empirical review. Journal of Water Process Engineering, 35, 101228. doi:10.1016/j.jwpe.2020.101228
  18. Ratola, Nuno & Botelho, Cidália & Alves, Arminda. (2003). The use of pine bark as a natural adsorbent for persistent organic pollutants - Study of lindane and heptachlor adsorption. Journal of Chemical Technology and Biotechnology. 78. 347 - 351. 10.1002/jctb.784.
  19. Edmo H. M. Cavalcante, Iuri C. M. Candido, Helinando P. de Oliveira, Kamilla Barreto Silveira, Thiago Víctor de Souza Álvares, Eder C. Lima, Mikael Thyrel, Sylvia H. Larsson, and Glaydson Simões dos Reis. 3-Aminopropyl-triethoxysilane-Functionalized Tannin-Rich Grape Biomass for the Adsorption of Methyl Orange Dye: Synthesis, Characterization, and the Adsorption Mechanism. ACS Omega 2022 7 (22), 18997-19009. DOI: 10.1021/acsomega.2c02101
  20. Sciban, Marina & Klasnja, Mile. (2004). Wood sawdust and wood originate materials as adsorbents for heavy metal ions. Holz als Roh- und Werkstoff. 62. 69-73. 10.1007/s00107-003-0449-7.
  21. S. Larous and A.H. Meniai / Energy Procedia 18 ( 2012 ) 905 – 914
  22. Chugunov, A. & Filatova, E.. (2021). Adsorption of petroleum products by modified and activated adsorbents. Proceedings of Universities. Applied Chemistry and Biotechnology. 11. 318-325. 10.21285/2227-2925-2021-11-2-318-325.
  23. Srivastava, S. K., Pant, N., & Pal, N. (1987). Studies on the efficiency of a local fertilizer waste as a low cost adsorbent. Water Research, 21(11), 1389–1394. doi:10.1016/0043-1354(87)90014-5
  24. Tewari, Sanjay. (2002). Studies on use of carbon slurry, a waste from fertilizer plants, in wastewater treatment.
  25. Saakshy, Singh, K., Gupta, A. B., & Sharma, A. K. (2016). Fly ash as low cost adsorbent for treatment of effluent of handmade paper industry-Kinetic and modelling studies for direct black dye. Journal of Cleaner Production, 112, 1227–1240. doi:10.1016/j.jclepro.2015.09.058
  26. Aigbe, U. O., Ukhurebor, K. E., Onyancha, R. B., Osibote, O. A., Darmokoesoemo, H., & Kusuma, H. S. (2021). Fly ash-based adsorbent for adsorption of heavy metals and dyes from aqueous solution: a review. Journal of Materials Research and Technology, 14, 2751–2774. doi:10.1016/j.jmrt.2021.07.140
  27. Chen, X., Song, H., Guo, Y. et al. Converting waste coal fly ash into effective adsorbent for the removal of ammonia nitrogen in water. J Mater Sci 53, 12731–12740 (2018). https://doi.org/10.1007/s10853-018-2394-1
  28. Anastopoulos, I., Bhatnagar, A., Hameed, B. H., Ok, Y. S., & Omirou, M. (2017). A review on waste-derived adsorbents from sugar industry for pollutant removal in water and wastewater. Journal of Molecular Liquids, 240, 179–188. doi:10.1016/j.molliq.2017.05.063
  29. Ezeonuegbu BA, Machido DA, Whong CMZ, Japhet WS, Alexiou A, Elazab ST, Qusty N, Yaro CA, Batiha GE. Agricultural waste of sugarcane bagasse as efficient adsorbent for lead and nickel removal from untreated wastewater: Biosorption, equilibrium isotherms, kinetics and desorption studies. Biotechnol Rep (Amst). 2021 Mar 26;30:e00614. doi: 10.1016/j.btre.2021.e00614. PMID: 33912404; PMCID: PMC8063741.
  30. Gupta, V. K., & Ali, I. (2000). Utilisation of bagasse fly ash (a sugar industry waste) for the removal of copper and zinc from wastewater. Separation and Purification Technology, 18(2), 131–140. doi:10.1016/s1383-5866(99)00058-1
  31. Tobhlong, W & Sompongchaiyakul, Penjai & Dharmvanij, Sirichai. (1994). Use of chitosan to treat the waste water from seafood processing plant. Thai Journal of Aquatic Science (Thailand). 1. 120.
  32. Znad, Hussein & Awual, Md & Martini, Sri. (2022). The Utilization of Algae and Seaweed Biomass for Bioremediation of Heavy Metal-Contaminated Wastewater. Molecules. 27. 1275. 10.3390/molecules27041275.
  33. Znad H, Awual MR, Martini S. The Utilization of Algae and Seaweed Biomass for Bioremediation of Heavy Metal-Contaminated Wastewater. Molecules. 2022 Feb 14;27(4):1275. doi: 10.3390/molecules27041275. PMID: 35209061; PMCID: PMC8876972.
  34. Williams, C. J., & Edyvean, R. G. J. (1997). Optimization of Metal Adsorption by Seaweeds and Seaweed Derivatives. Process Safety and Environmental Protection, 75(1), 19–26. doi:10.1205/095758297528733
  35. Li, R., Zhang, T., Zhong, H., Song, W., Zhou, Y., & Yin, X. (2020). Bioadsorbents from algae residues for heavy metal ions adsorption: chemical modification, adsorption behaviour and mechanism. Environmental Technology, 1–12. doi:10.1080/09593330.2020.1723711
  36. L. Ringqvist et al. / Water Research 36 (2002) 2394–2404
  37. Quyen, Dinh & Loc, Luu & Ha, Huynh & Nga, Dang & Tri, Nguyen & Van, Nguyen. (2017). Synthesis of adsorbent with zeolite structure from red mud and rice husk ash and its properties. AIP Conference Proceedings. 1878. 020034. 10.1063/1.5000202.
  38. Bakhodir Sultanov et al. Agriculture of the Republic of Uzbekistan after the peak of the pandemic. E3S Web of Conferences 244, 03024 (2021) https://doi.org/10.1051/e3sconf/202124403024
  39. The global biochar market is expected to grow from USD 164.5 million in 2021 to USD 365.0 million by 2028 at a CAGR of 12.1% in the forecast period... Read More at:- https://www.fortunebusinessinsights.com/industry-reports/biochar-market-100750
  40. Yingjie Dai, Naixin Zhang, Chuanming Xing, Qingxia Cui,Qiya Sun. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: A review. Chemosphere Volume 223, May 2019, Pages 12-27. Author links open overlay panel: URL: https://doi.org/10.1016/j.chemosphere.2019.01.161
  41. Ping Zhang, David O’Connor,Yinan Wang, LinJiang, TianxiangXiabLiuweiWangaDaniel C.W.TsangcYong SikOkdDeyiHoua. A green biochar/iron oxide composite for methylene blue removal. Journal of Hazardous Materials Volume 384, 15 February 2020, 121286. Author links open overlay panel:. URL: https://doi.org/10.1016/j.jhazmat.2019.121286
  42. Hoslett, J., Ghazal, H., Katsou, E., & Jouhara, H. (2020). The removal of tetracycline from water using biochar produced from agricultural discarded material. Science of The Total Environment, 141755. doi:10.1016/j.scitotenv.2020.141
  43. Chakhtouna, H., Benzeid, H., Zari, N., Qaiss, A. el kacem, & Bouhfid, R. (2021). Functional CoFe2O4‐modified biochar derived from banana pseudostem as an efficient adsorbent for the removal of amoxicillin from water. Separation and Purification Technology, 266, 118592. doi:10.1016/j.seppur.2021.118592
  44. Rashidi, Nor Adilla & Suzana, Yusup. (2020). A Mini Review of Biochar Synthesis, Characterization, and Related Standardization and Legislation. 10.5772/intechopen.92621.
  45. Paygamov R.A., Jumaevа D.J., Kuldasheva Sh.A., Eshmetov I.D. Obtaining import-substituting adsorbents based on charcoal //Journal Chemical technology monitoring and control. - 2018. № 1-2.- P. 56- 60.
  46. Guo, F., Bao, L., Wang, H., Larson, S. L., Ballard, J. H., Knotek-Smith, H. M., … Han, F. (2020). A simple method for the synthesis of biochar nanodots using hydrothermal reactor. MethodsX, 101022. doi:10.1016/j.mex.2020.101022
  47. Zhu L, Lei H, Zhang Y, Zhang X, Bu Q, Wei Y, et al. A Review of Biochar Derived from Pyrolysis and Its Application in Biofuel Production. SF J Material Chem Eng. 2018; 1(1): 1007
  48. Yaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A. (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports, 28, e00570. doi:10.1016/j.btre.2020.e00570
  49. Li, L., Rowbotham, J. S., Christopher Greenwell, H., & Dyer, P. W. (2013). An Introduction to Pyrolysis and Catalytic Pyrolysis: Versatile Techniques for Biomass Conversion. New and Future Developments in Catalysis, 173–208. doi:10.1016/b978-0-444-53878-9.00009-6
  50. Chen, H. (2015). Lignocellulose biorefinery conversion engineering. Lignocellulose Biorefinery Engineering, 87–124. doi:10.1016/b978-0-08-100135-6.00004-1
  51. Sakhiya, Anil Kumar & Anand, Abhijeet. (2020). Production, Activation and Application of Biochar in Recent Times. 10.1007/s42773-020-00047-1.
  52. Anto, S., Sudhakar, M. P., Shan Ahamed, T., Samuel, M. S., Mathimani, T., Brindhadevi, K., & Pugazhendhi, A. (2021). Activation strategies for biochar to use as an efficient catalyst in various applications. Fuel, 285, 119205. doi:10.1016/j.fuel.2020.119205
  53. Sajjadi, Baharak, Chen, Wei-Yin and Egiebor, Nosa O.. "A comprehensive review on physical activation of biochar for energy and environmental applications" Reviews in Chemical Engineering, vol. 35, no. 6, 2019, pp. 735-776. https://doi.org/10.1515/revce-2017-0113
  54. Bosch, D., Rendl, L., Plangger, F., Hofmann, A., & Langergraber, G. (2021). Chemical Activation of Biochar with H3PO4 - A Comparison between Two Reactor Types. Chemical Engineering Transactions, 86, 1-6. https://doi.org/10.3303/CET2186001
  55. Siipola, V., Tamminen, T., Källi, A., Lahti, R., Romar, H., Rasa, K., Keskinen, R., Hyväluoma, J., Hannula, M., and Wikberg, H. (2018). "Effects of biomass type, carbonization process, and activation method on the properties of bio-based activated carbons," BioRes. 13(3), 5976-6002.
  56. Kołtowski, M., Charmas, B., Skubiszewska-Zięba, J., & Oleszczuk, P. (2017). Effect of biochar activation by different methods on toxicity of soil contaminated by industrial activity. Ecotoxicology and Environmental Safety, 136, 119–125. doi:10.1016/j.ecoenv.2016.10.033
  57. Nartey, O. D., & Zhao, B. (2014). Biochar Preparation, Characterization, and Adsorptive Capacity and Its Effect on Bioavailability of Contaminants: An Overview. Advances in Materials Science and Engineering, 2014, 1–12. doi:10.1155/2014/715398
  58. Marmiroli M, Bonas U, Imperiale D, Lencioni G, Mussi F, Marmiroli N, Maestri E. Structural and Functional Features of Chars From Different Biomasses as Potential Plant Amendments. Front Plant Sci. 2018 Aug 17;9:1119. doi: 10.3389/fpls.2018.01119. PMID: 30174674; PMCID: PMC6108160.
  59. Liu Z, Dugan B, Masiello CA, Gonnermann HM. Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS One. 2017 Jun 9;12(6):e0179079. doi: 10.1371/journal.pone.0179079. PMID: 28598988; PMCID: PMC5466324.
  60. Alghamdi, A. G., Alkhasha, A., & Ibrahim, H. M. (2020). Effect of biochar particle size on water retention and availability in a sandy loam soil. Journal of Saudi Chemical Society, 24(12), 1042–1050. doi:10.1016/j.jscs.2020.11.003
  61. Qiu, Zhipeng & Wang, Yesheng & Bi, Xu & Zhou, Tong & Zhou, Jin & Zhao, Jinping & Miao, Zhichao & Yi, Weiming & Fu, Peng & Zhuo, Shuping. (2018). Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors. Journal of Power Sources. 376. 82-90. 10.1016/j.jpowsour.2017.11.077.
  62. Manariotis, I. D., Fotopoulou, K. N., & Karapanagioti, H. K. (2015). Preparation and Characterization of Biochar Sorbents Produced from Malt Spent Rootlets. Industrial & Engineering Chemistry Research, 54(39), 9577–9584. doi:10.1021/acs.iecr.5b02698
  63. Yu, OY., Raichle, B. & Sink, S. Impact of biochar on the water holding capacity of loamy sand soil. Int J Energy Environ Eng 4, 44 (2013). https://doi.org/10.1186/2251-6832-4-44
  64. Wu, Mengxiong & Feng, Qibo & Sun, Xue & Wang, Hailong & Gielen, Gerty & Wu, Wei-Xiang. (2015). Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil. Scientific reports. 5. 10001. 10.1038/srep10001.
  65. Behazin, Ehsan & Ogunsona, Emmanuel & Rodriguez, Arturo & Mohanty, Amar & Misra, Manjusri & Anyia, Anthony. (2016). PEER-REVIEWED ARTICLE Mechanical, Chemical, and Physical Properties of Wood and Perennial Grass Biochars for Possible Composite Application. Bioresources. 11. 1334-1348.
  66. Janu, R., Mrlik, V., Ribitsch, D., Hofman, J., Sedláček, P., Bielská, L., & Soja, G. (2021). Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. Carbon Resources Conversion, 4, 36–46. doi:10.1016/j.crcon.2021.01.003
  67. Singh B, Fang Y, Johnston CT. A Fourier-Transform Infrared Study of Biochar Aging in Soils. Soil Sci Soc Am J. 2016;80(3):613-622. doi: 10.2136/sssaj2015.11.0414. Epub 2016 Jun 24. PMID: 29657354; PMCID: PMC5898394.
  68. Ray, A., Banerjee, A. and Dubey, A. 2020. Characterization of Biochars from Various Agricultural By-Products Using FTIR Spectroscopy, SEM focused with image Processing. IJAEB, 13(4): 423–430.
  69. Ma, Xingzhu & Zhou, Baoku & Budai, Alice & Jeng, Alhaji & Hao, Xiaoyu & Wei, Dan & Zhang, Yulan & Rasse, Daniel. (2016). Study of Biochar Properties by Scanning Electron Microscope – Energy Dispersive X-Ray Spectroscopy (SEM-EDX). Communications in Soil Science and Plant Analysis. 10.1080/00103624.2016.1146742.
  70. Suman, Swapan & Panwar, Deepak & Gautam, Dr. (2017). Surface morphology properties of biochars obtained from different biomass waste. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 1-6. 10.1080/15567036.2017.1283553.
  71. Viglašová, Eva & Galamboš, Michal & Diviš, David & Danková, Zuzana & Dano, Martin & Krivosudský, Lukáš & Lengauer, Christian & Matik, Marek & Briančin, Jaroslav & Soja, Gerhard. (2020). Engineered biochar as a tool for nitrogen pollutants removal: preparation, characterization and sorption study. Desalination and water treatment. 191. 318-331. 10.5004/dwt.2020.25750.
  72. Marmiroli, M., Bonas, U., Imperiale, D., Lencioni, G., Mussi, F., Marmiroli, N., & Maestri, E. (2018). Structural and Functional Features of Chars From Different Biomasses as Potential Plant Amendments. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01119
  73. Park, Young-Hun & Kim, Jinsoo & Kim, Seung-Soo & Park, Young-Kwon. (2008). Pyrolysis Characteristics and Kinetics of Oak Trees Using Thermogravimetric Analyser and Micro-Tubing Reactor. Bioresource technology. 100. 400-5. 10.1016/j.biortech.2008.06.040.
  74. Sørmo, E., Silvani, L., Thune, G., Gerber, H., Schmidt, H. P., Smebye, A. B., & Cornelissen, G. (2020). Waste timber pyrolysis in a medium-scale unit: Emission budgets and biochar quality. Science of The Total Environment, 137335. doi:10.1016/j.scitotenv.2020.1373
  75. K. Jindo, H. Mizumoto, Y. Sawada, M. Sanchez-Monedero, and T. Sonoki, “Physical and chemical characterization of biochars derived from different agricultural residues,” Biogeosciences, vol. 11 (23), pp. 6613-662, 2014. DOI: http://doi.org/10.5194/bg-11-6613-2014.
  76. Fahmi, Alaa & W., Samsuri & Jol, Hamdan & S.K., Daljit. (2018). Physical modification of biochar to expose the inner pores and their functional groups to enhance lead adsorption. RSC Advances. 8. 38270-38280. 10.1039/C8RA06867D.
  77. Kazimierski P, Hercel P, Suchocki T, Smoliński J, Pladzyk A, Kardaś D, Łuczak J, Januszewicz K. Pyrolysis of Pruning Residues from Various Types of Orchards and Pretreatment for Energetic Use of Biochar. Materials (Basel). 2021 May 31;14(11):2969. doi: 10.3390/ma14112969. PMID: 34072760; PMCID: PMC8198515.
  78. Kumar NS, Shaikh HM, Asif M, Al-Ghurabi EH. Engineered biochar from wood apple shell waste for high-efficient removal of toxic phenolic compounds in wastewater. Scientific Reports. 2021 Jan;11(1):2586. DOI: 10.1038/s41598-021-82277-2. PMID: 33510311; PMCID: PMC7844263.
  79. Chowdhury, Zaira & Karim, Md & Ashraf, Muhammad & Khalisanni, Khalid. (2016). Influence of Carbonization Temperature on Physicochemical Properties of Biochar derived from Slow Pyrolysis of Durian Wood (Durio zibethinus) Sawdust. Bioresources. 11. 3356-3372. 10.15376/biores.11.2.3356.
  80. Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Withanage M, Lee SS, Ok YS (2014b) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33
  81. Tomul, Fatma & Arslan, Yasin & Kabak, Burcu & Trak, Diğdem & Kendüzler, Erdal & Lima, Eder & Tran, Hai. (2020). Peanut shells-derived biochars prepared from different carbonization processes: Comparison of characterization and mechanism of naproxen adsorption in water (50 days' free access). Science of The Total Environment. 726. 10.1016/j.scitotenv.2020.137828.
  82. Tomczyk, A., Sokołowska, Z. & Boguta, P. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotechnol 19, 191–215 (2020). https://doi.org/10.1007/s11157-020-09523-3
  83. Rossi MM, Silvani L, Amanat N, Petrangeli Papini M. Biochar from Pine Wood, Rice Husks and Iron-Eupatorium Shrubs for Remediation Applications: Surface Characterization and Experimental Tests for Trichloroethylene Removal. Materials (Basel). 2021 Apr 3;14(7):1776. doi: 10.3390/ma14071776. PMID: 33916830; PMCID: PMC8038453.
  84. Fahmi, A. H., Samsuri, A. W., Jol, H., & Singh, D. (2018). Physical modification of biochar to expose the inner pores and their functional groups to enhance lead adsorption. RSC Advances, 8(67), 38270–38280. doi:10.1039/c8ra06867d
  85. Soria, R. I., Rolfe, S. A., Betancourth, M. P., & Thornton, S. F. (2020). The relationship between properties of plant-based biochars and sorption of Cd(II), Pb(II) and Zn(II) in soil model systems. Heliyon, 6(11), e05388. doi:10.1016/j.heliyon.2020.e05388
  86. Liu, X., Li, G., Chen, C. et al. Banana stem and leaf biochar as an effective adsorbent for cadmium and lead in aqueous solution. Sci Rep 12, 1584 (2022). https://doi.org/10.1038/s41598-022-05652-7
  87. Suleman, Muhammad & Zafar, Muhammad & Ahmed, Ashfaq & Rashid, Muhammad & Hussain, Sadiq & Razzaq, Abdul & Mohidem, Nur Atikah & Fazal, Tahir & Haider, Bilal & Park, Young-Kwon. (2021). Castor Leaves-Based Biochar for Adsorption of Safranin from Textile Wastewater. Sustainability. 13. 10.3390/su13126926.
  88. Zhang, Jin & Zhang, Jianyun & Wang, Minyan & Wu, Shengchun & Wang, Hailong & Niazi, Nabeel & Man, Yu & Christie, Peter & Shan, Shengdao & Wong, Ming. (2019). Effect of tobacco stem-derived biochar on soil metal immobilization and the cultivation of tobacco plant. Journal of Soils and Sediments. 19. 10.1007/s11368-018-02226-x.
  89. Lawal, A. A., Hassan, M. A., Farid, M. A. A., Yasim-Anuar, T. A. T., Yusoff, M. Z. M., Zakaria, M. R., … Shirai, Y. (2020). Production of biochar from oil palm frond by steam pyrolysis for removal of residual contaminants in palm oil mill effluent final discharge. Journal of Cleaner Production, 121643. doi:10.1016/j.jclepro.2020.121643
  90. A. Navya et al. Preparation and characterization of cassava stem biochar for mixed reactive dyes removal from simulated effluent/ Desalination and Water Treatment 189 (2020) 440–451
  91. Wang, Y.-Y., Lu, H.-H., Liu, Y.-X., & Yang, S.-M. (2016). Ammonium citrate-modified biochar: An adsorbent for La(III) ions from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 509, 550–563. doi:10.1016/j.colsurfa.2016.09.060
  92. Cha, J. S., Park, S. H., Jung, S.-C., Ryu, C., Jeon, J.-K., Shin, M.-C., & Park, Y.-K. (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 40, 1–15. doi:10.1016/j.jiec.2016.06.002
  93. Sun, Y., Wang, T., Sun, X., Bai, L., Han, C., & Zhang, P. (2021). The potential of biochar and lignin-based adsorbents for wastewater treatment: Comparison, mechanism, and application—A review. Industrial Crops and Products, 166, 113473. doi:10.1016/j.indcrop.2021.113473
  94. Siipola, Pflugmacher, Romar, Wendling, & Koukkari. (2020). Low-Cost Biochar Adsorbents for Water Purification Including Microplastics Removal. Applied Sciences, 10(3), 788. doi:10.3390/app10030788
  95. Srivatsav, P., Bhargav, B. S., Shanmugasundaram, V., Arun, J., Gopinath, K. P., & Bhatnagar, A. (2020). Biochar as an Eco-Friendly and Economical Adsorbent for the Removal of Colorants (Dyes) from Aqueous Environment: A Review. Water, 12(12), 3561. doi:10.3390/w12123561
  96. Mohan, D., Sarswat, A., Ok, Y. S., & Pittman, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – A critical review. Bioresource Technology, 160, 191–202. doi:10.1016/j.biortech.2014.01.12
  97. Fdez-Sanromán, A., Pazos, M., Rosales, E., & Sanromán, M. A. (2020). Unravelling the Environmental Application of Biochar as Low-Cost Biosorbent: A Review. Applied Sciences, 10(21), 7810. doi:10.3390/app10217810
  98. Xiang, W., Zhang, X., Chen, J., Zou, W., He, F., Hu, X., … Gao, B. (2020). Biochar technology in wastewater treatment: A critical review. Chemosphere, 126539. doi:10.1016/j.chemosphere.2020.12
  99. Enaime, G., Baçaoui, A., Yaacoubi, A., & Lübken, M. (2020). Biochar for Wastewater Treatment—Conversion Technologies and Applications. Applied Sciences, 10(10), 3492. doi:10.3390/app10103492
  100. Deng, Yaxin, Zhang, Tao, Wang, Qiming. "Biochar Adsorption Treatment for Typical Pollutants Removal in Livestock Wastewater: A Review". Engineering Applications of Biochar, edited by Wu-Jang Huang, IntechOpen, 2017. 10.5772/intechopen.68253.
  101. Ambaye, T.G., Vaccari, M., van Hullebusch, E.D. et al. Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. Int. J. Environ. Sci. Technol. 18, 3273–3294 (2021). https://doi.org/10.1007/s13762-020-03060-w
  102. Krasucka, P., Pan, B., Sik Ok, Y., Mohan, D., Sarkar, B., & Oleszczuk, P. (2020). Engineered biochar - a sustainable solution for the removal of antibiotics from water. Chemical Engineering Journal, 126926. doi:10.1016/j.cej.2020.126926
  103. Hoslett, J., Ghazal, H., Katsou, E., & Jouhara, H. (2020). The removal of tetracycline from water using biochar produced from agricultural discarded material. Science of The Total Environment, 141755. doi:10.1016/j.scitotenv.2020.1417
  104. Wu Q, Xian Y, He Z, Zhang Q, Wu J, Yang G, Zhang X, Qi H, Ma J, Xiao Y, Long L. Adsorption characteristics of Pb(II) using biochar derived from spent mushroom substrate. Sci Rep. 2019 Nov 5;9(1):15999. doi: 10.1038/s41598-019-52554-2. PMID: 31690791; PMCID: PMC6831587.
  105. Wang, Hong & Xia, Wen & Lu, Ping. (2017). Study on adsorption characteristics of biochar on heavy metals in soil. Korean Journal of Chemical Engineering. 34. 1-7. 10.1007/s11814-017-0048-7.
  106. Liu J, Wang H, Ma N, Zhou B, Chen H, Yuan R. Optimization of the raw materials of biochars for the adsorption of heavy metal ions from aqueous solution. Water Sci Technol. 2022 May;85(10):2869-2881. doi: 10.2166/wst.2022.158. PMID: 35638793.
  107. Kılıç, M., Kırbıyık, Ç., Çepelioğullar, Ö., & Pütün, A. E. (2013). Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis. Applied Surface Science, 283, 856–862. doi:10.1016/j.apsusc.2013.07.033
  108. Liang, L., Xi, F., Tan, W. et al. Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar 3, 255–281 (2021). https://doi.org/10.1007/s42773-021-00101-6
  109. Qambrani, Naveed Ahmed & Rahman, Md. Mukhlesur & Won, Seunggun & Shim, Soomin & Ra, Changsix, 2017. "Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 255-273.
  110. Li, B., Liu, D., Lin, D., Xie, X., Wang, S., Xu, H., Hu, X. (2020). Changes in Biochar Functional Groups and Its Reactivity after Volatile–Char Interactions during Biomass Pyrolysis. Energy & Fuels, 34(11), 14291–14299. doi:10.1021/acs.energyfuels.0c032
  111. Armynah, B., Atika, Djafar, Z., Piarah, W. H., & Tahir, D. (2018). Analysis of Chemical and Physical Properties of Biochar from Rice Husk Biomass. Journal of Physics: Conference Series, 979, 012038. doi:10.1088/1742-6596/979/1/012038
  112. Uchimiya, Minori & Bannon, Desmond & Wartelle, Lynda. (2012). Retention of Heavy Metals by Carboxyl Functional Groups of Biochars in Small Arms Range Soil. Journal of agricultural and food chemistry. 60. 1798-809. 10.1021/jf2047898.
  113. Islam, M. S., Kwak, J.-H., Nzediegwu, C., Wang, S., Palansuriya, K., Kwon, E. E. Chang, S. X. (2021). Biochar heavy metal removal in aqueous solution depends on feedstock type and pyrolysis purging gas. Environmental Pollution, 281, 117094. doi:10.1016/j.envpol.2021.117094
  114. Duwiejuah AB, Abubakari AH, Quainoo AK, Amadu Y. Review of Biochar Properties and Remediation of Metal Pollution of Water and Soil. J Health Pollut. 2020 Aug 19;10(27):200902. doi: 10.5696/2156-9614-10.27.200902. PMID: 32874758; PMCID: PMC7453820.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.