Abstract
The article discusses the modeling of a fuzzy-logical system of regulation of the process of drying of raw cotton. The tasks of overcoming uncertainties arising in the process of operation of technological units at the enterprises of the cotton-cleaning industry are presented. An example of solving such a problem by using an artificial neural network is given. Mathematical models based on the neural network have been developed that are used to formalize the process of drying raw cotton and determine the optimal tuned parameters of the fuzzy-logical PID controller, allowing the fate of changing the operating modes of the technological units of the drying drum. A method for determining the number of synoptic weights of artificial neural networks is proposed, which minimizes the number of trainings and increases the speed of management decisions. To train the neural network weights use the reverse spreading error method. The range of variation of the regulator parameter is justified, taking into account the features of the cotton drying process. As a result, the proposed model was used in the control system of the drying process in terms of quality indicators, which led to an increase in the accuracy of the technological process.
First Page
218
Last Page
223
References
1.Cotton: World Statistics. Bulletin of the International Cotton Advisory Committee, NY, November 2015.http://www.ICAC.org.,http://www.USDA.gov
2. Rojkov. S.A., Ternova T.I., Edinovich M.B. Problemi avtomatizovanogo rozbrakuvannya tkanin. // Problemы legkoy i tekstilnoy promыshlennosti Ukrainы, 2004. №2(9), S.204-211.
3. Parpiev.A.R., Usmanqulov.A va boshq. Chigitli paxtani quritish,-T.,:“Fan va texnologiyalar”, 2009 y.B.34-36.
4. Zarubin V.S. Matematicheskoe modelirovanie v texnike- Moskva: izd. MVTU, 2003 g. S. 56-60
5. Paxta xom ashyosini quritish. Darslik Parpiev A., Axmatov- M. S., Usmonqulov A.B., Mo‘minov M, - Toshkent, “CHo‘lpon”, 2009 y. S 70-78.
6. Sinyavskaya E.D. Analiz tochnosti rabotы nechetkoy modeli i optimizatsiya ee parametrov na primere upravleniya temperaturoy v xlebopekarnoy kamere. // Materialы II Vserossiyskoy nauchno-prakticheskoy konferensii «Molodyoj, nauka, innovatsii»- Groznыy, 2013.S. 95-100.
7. Siddikov I. X., Setmetov N.U. Metodologicheskaya osnova i prinsipы sozdaniya kompyuternoy sistemы podderjki prinyatiya resheniy dlya xlopkoochistitelnыx zavodov // Problemы tekstilya. Tashkent .2008№1 S.11-14
8. Gostev V. I. Proektirovanie nechetkix regulyatorov dlya sistem avtomaticheskogo upravleniya – SPb.: BXV – Peterburg, 2011.- 416 s.
9. Pegat A. Nechetkoe modelirovanie i upravlenie. M.: Binom. Laboratoriya znaniy, 2009-798 s.
10. Yunusova. S.T. Nechetkaya model upravleniya texnologicheskimi parametrami teplogeneriruyuщix ustanovok.// Problemы energo - i resursosberejeniya -T,: 2017 g. № 3-4. S. 118-122
11. Alp Yanar T., Akyurek Z., 2011 Fuzzy model tuning using simulated annealing, Expert Systems with Applications.№38:8159-8169.
12. Mamatov A.Z. Modelirovanie texnologii sushki xlopka-sыrsa s selyu povыsheniya kachestvo volokna // Diss. Na soiskanie uchenoy stepeni. d.t.n. Tashkent. 1995g. S.248.
13.Igamberdiev X.Z. Issledovanie voprosov matematicheskogo modelirovaniya i upravleniya protsessom sushki xlopka – sыrsa: Avtoref. dis. kand.tex.nauk. –Tashkent: 1974. -26 s.
14. Polyakov K.A. Polyakov A.E. Reshenie zadachi optimizatsii energosberegayuщix rejimov tekstilnogo oborudovaniya. // Izv. Vuzov. Texnologiya tekstilnoy promыshlennosti, 2005. -№1. – s. 124-127.
15. Artыkov R.D. Povыshenie effektivnosti protsessa podgotovki xlopka k pererabotki putem optimizatsii temperaturnogo rejima sushki. // Diss. na soiskanie uchenoy stepeni kand. texn. Nauk Tashkent 1998. S.36.
16. Karsukova A. V. Intensifikatsiya sushki xlopka-sыrsa s primeneniem sushilnogo agenta vыsokoy vlajnosti i temperaturы: Dis. kand.tex.nauk. –Tashkent: 1984. -163s.
17. Xolmatov D.A., YUnusova S.T. Setmetov N.U.,Xujanazarov U.O. Software tool monitoring process of processing raw cotton. International Journal of Advanced Research in Science, Engineering and Technology Vol. 6, Issue 2 , March 2019.
18. S.T. YUnusova. Nechetkaya model upravleniya texnologicheskimi parametrami teplogeneriruyuщix ustanovok –«Problemы energo i resursosberejeniya».-Toshkent -№ 3-4,2017 g.118-122s.
19. YUnusova S.T. O formalizatsii kriteriya optimizatsii protsessa ochistki xlopka-sыrsa ToshDTU xabarlari .2013 y . №3- ,35-40.
20. Xolmatov D.A., Yunusova S.T. Setmetov N.U.,Xujanazarov U.O. Information and algorithmic technological monitoring system algorithmic processes processing of raw cotton. WCIS -2014., Eighth World Conference on Intelligent Sistems for Industrial Automatik..Toshkent .261-264bet.
Recommended Citation
Yunusova, S. T.
(2019)
"SIMULATION OF A TRAINED TRAINED NEURAL NETWORK OF A FUZZY LOGIC REGULATION SYSTEM BASED ON THE COTTON DRYING PROCESS,"
Technical science and innovation: Vol. 2019:
Iss.
2, Article 7.
DOI: https://doi.org/10.51346/tstu-01.19.2.-77-0027
Available at:
https://btstu.researchcommons.org/journal/vol2019/iss2/7