Abstract
Systems with pulse-width modulation are essentially non-linear automatic control systems. The complexity factors of pulse-width systems include multivariable, the multirate nature of the pulse-width modulators work, and the nonstationarity of control objects. Such systems have been known for a long time and are now widely used. Various exact and approximate methods have been proposed for the analysis and synthesis of PWM systems. The field of the practical application of known methods is limited to single-variable systems because classical approaches provide for the consideration of the initial structures as a whole. Hence, the root cause of the fundamental difficulties arising in the study of such systems.This article proposes a decompositional method for modelling and studying multivariable pulse-width automatic control systems based on the dynamic graph models. One of the key factor when create the one approach for mathematical formulation, analysis and synthesis of discrete dynamic systems is the maximum consideration of general physical special features in terms of these systems. The general fundamental singularity of systems concerned is the natural decomposition (structure discretization) on simple subsystems or structural states of Si. In the multivariable pulse-width systems, the model of each separate or cross channel is a single-variable impulse system graph. Decomposition into processes in separate and cross channels allows to change the parameters of certain channels and to carry out interval correction of dynamic processes occurring in transmission channels. This method can be used for analysis and synthesis of both single-variable and multivariable systems.
First Page
5
Last Page
12
References
1. Tsyipkin Ya.Z. Releynyie avtomaticheskie sistemyi. M.: Nauka, 1974. 450 s.
2. Vidal P. Nelineynyie impulsnyie sistemyi. /Per. s frants., M.: Energiya, 1974. 336s.
3. Tu Yu.T. Sovremennaya teoriya upravleniya. M.: Mashinostroenie, 1971. 468 s.
4. Olsson G., Piani D. Tsifrovyie sistemyi avtomatizatsii i upravleniya. SPB.: Nevskiy Dialekt, 2001. 557 s.
5. Besekerskiy V.A., Popov E. Teoriya sistem avtomaticheskogo upravleniya. -M.: Professiya, 2003. 704 s.
6. Djuri E. Impulsnyie sistemyi avtomaticheskogo regulirovaniya. /Per. s angl. M.A. Bermanta, J.L. Grina; /Pod red. Ya.Z. Tsyipkina. -M.: Fizmatgiz, 1963. 455 s.
7. Imaev D.H., Krasnoproshina A.A., Yakovlev V.B. Teoriya avtomaticheskogo upravleniya. Ch.2: Nelineynyie, impulsnyie i stohasticheskie sistemyi avtomaticheskogo upravleniya. Kiev: Vyischa shkola, 1992. 475 s.
8. Kaganov V.I., Tereschenko S.V. Kompyuternyiy analiz impulsnoy sistemyi avtomaticheskogo regulirovaniya // Vestnik Voronejskogo instituta MVD Rossii. 2011. №2. S.6-13.
9. Shishlakov V.F. Sintez nelineynyih impulsnyih sistem upravleniya vo vremennoy oblasti / Izvestiya vuzov. Ser. Priborostroenie. 2003. №12. S.25-30.
10. Bogdanov K.V., Lovchikov A.N. Modelirovanie preobrazovateley napryajeniya s SHIM na yazyike ERLANG // Aktualnyie problemyi aviatsii i kosmonavtiki, 2012. T.1, №8. S.348-349.
11. Oleschuk V.I. Nelineynyie zakonyi regulirovaniya elektroprivoda s razomknutyimi obmotkami asinhronnogo elektrodvigatelya na baze chetyireh SHIM-invertorov // Problemyi regionalnoy energetiki. 2017. №1 (33).
12. Sira-Ramirez, H. (1989) A geometric approach to pulse-width modulated control in nonlinear dynamical systems. IEEE Transactions on Automatic Control, vol. 34, no. 2, pp. 184-187. doi: 10.1109/9.21094
13. Sira-Ramirez, H. and Llanes-Santiago, O. (1993). Adaptive PWM Regulation Schemes in Switched Controlled Systems, Proc. of the 12th IFAC World Congress, Sydney Australia, volume 10, 57–60.
14. Hou, L., Michel, A. (2001) Stability analysis of pulse-width-modulated feedback systems. Automatica, Volume 37, Issue 9, pp.1335-1349. https://doi.org/10.1016/S0005-1098(01)00100-5
15. Yurkevich, V.D. (2011) PWM controller design based on singular perturbation technique: a case study of buck-boost dc-dc converter. IFAC Proceedings Volumes.
16. Lijun, H.J., Shi, Z.W. (2016) Effects of operating parameters for dynamic PWM variable spray system on spray distribution uniformity. 5th IFAC Conference on Sensing, Control and Automation Technologies for Agriculture. Seattle, WA, USA. https://doi.org/10.1016/j.ifacol.2016.10.040.
17. Heriyanto, H., Seminar, B., Solahudin, M. (2016). Water supply pumping control system using PWM based on precision agriculture principles. International Agricultural Engineering Journal. Vol. 25, № 2. 1-8.
18. Deng, Z., Song, W. (2015) Inductance sensitivity analysis of model predictive direct current control strategies for single-phase PWM converters. Proceedings of the 2015 IEEE 2nd International Future Energy Electronics Conference (IFEEC), pp. 1–6, Taipei, Taiwan.
19. Kadirova A.A. Metodyi modelirovaniya i issledovaniya nelineynyih i logiko-dinamicheskih sistem upravleniya. T.: Yangi asr avlodi, 2010. 186 s.
20. Kadirov A.A. Dekompozitsionnyie osnovyi modelirovaniya i issledovaniya sistem upravleniya na baze dinamicheskih grafov. T.: IQTISOD-MOLIYA, 2015. 224 s.
21. Kadirov A.A.; Kadirova A.A. Modelirovanie i issledovanie nelineynyih amplitudno-impulsnyih sistem na baze dinamicheskih grafov. Tashkent: Navruz, 2018. 236 s.
22. Kadirova, A., Kadirova, D., Bakhracheva, J. Compensation of delay in multivariable control systems using the method of dynamic graphs. Journal of Technical University of Gabrovo, volume 58, 2019, p.47-52. http://izvestia.tugab.bg/index.php?m=20&tom=16.
Recommended Citation
Kadirov, A.A.; Kadirova, D.R.; and Nazarov, A.M.
(2019)
"DECOMPOSITIONAL METHOD FOR MODELLING AND STUDYING PULSE-WIDTH AUTOMATIC CONTROL SYSTEMS BASED ON DYNAMIC GRAPHS,"
Technical science and innovation: Vol. 2019:
Iss.
1, Article 1.
DOI: https://doi.org/10.51346/tstu-01.19.1.-77-0007
Available at:
https://btstu.researchcommons.org/journal/vol2019/iss1/1