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Abstract. The article examines the motion caused by the explosion of a spherical charge in 

elastoplastic continuous media. When a charge explodes, it is assumed that the charge instantly turns 

into a high-pressure gas without changing its volume, and this gas spreads into the environment, 

forming a shock wave with spherical symmetry. Taking into account the presence of tangential stresses 

in inclined areas, equations of one-dimensional dynamic motion of soil are derived, according to 

which the patterns of propagation of shock waves in soil massifs during an explosion with spherical 

symmetry are studied. To find the limiting state of the soil, the Prandtl plasticity condition was used, 
and also when determining the radial stress at the shock wave front, experimental dependencies 

between  *  and  **, ii   were used. The general solution of the problem and the necessary 

values for its numerical solution in the case of constant density on the shock wave are given. 

Keywords. Shock wave, explosion, normal and shear stress, spherical symmetry, medium 

density, intensity, plastic gas.  

Annotatsiya: Maqolada elastik-plastik tutash muhitlarda sferik zaryadning portlashi 

natijasida yuzaga keladigan harakat kо‘rib chiqilgan. Zaryad portlaganda bir lahzada, hajmini 

о‘zgartirmasdan, yuqori bosimli gazga aylanadi va bu gaz atrof-muhitga sferik simmetriyali zarba 

tо‘lqinining shakllanishi bilan tarqaladi, deb taxmin qilinadi. Bunda qiya yuzalarda urinma 
kuchlanishlar mavjudligini hisobga olgan holda, muhitning bir о‘lchovli dinamik harakati 

tenglamalari olingan va unga kо‘ra sferik simmetriyali portlash paytida grunt massivlarida zarba 

tо‘lqinlarining tarqalish qonuniyatlari о‘rganilgan. Gruntning chegaraviy holatini topish uchun 

Prandtlyaning plastiklik shartidan, shuningdek zarba tо‘lqini frontidagi radial kuchlanishni 

aniqlashda  *  va  **, ii   lar orasidagi eksperimental bog‘liqliklardan ham foydalanilgan. 

Masalaning umumiy yechimi va uni sonli yechish uchun zarur qiymatlar zarbiy tо‘lqindagi zichlik 

о‘zgarmas bо‘lgan holda keltirilgan (98 sо‘z). 

Tayanch sо‘zlar: Zarbiy tо‘lqin, portlash, normal va urinma kuchlanish, sferik simmetriya, 

muhit zichligi, intensivlik, plastik gaz. 

Аннотация. В статье рассмотрено движение, вызванное взрывом сферического 

заряда в упругопластических сплошных средах. При взрыве заряда предполагается, что заряд 

мгновенно превращается в газ высокого давления, не изменяя своего объема, и этот газ 

распространяется в окружающую среду, образуя ударную волну со сферической симметрией. 

Учитывая наличие касательных напряжений в наклонных площадках выведены уравнения 

одномерного динамического движения грунта, согласно которому исследуются 

закономерности распространения ударных волн в грунтовых массивах при взрыве со 
сферической симметрией. Для нахождения предельного состояния грунта использовано 

условие пластичности Прандтля, а также при определении радиального напряжения на 

фронте ударной волны использованы экспериментальные зависимости между  *  и 

 **, ii 
. Приведены общее решение задачи и необходимые значения для ее численного 

решения в случае постоянной плотности на ударной волне. 

Ключевые слова. Ударная волна, взрыв, нормальное и касательное напряжения, 

сферическая симметрия, плотность среды, интенсивность, пластический газ. 

 

Introduction 
Integrated design issues, i.e. calculation and 

design, construction, reconstruction and restoration 

of tunnels and underground structures (service and 
technological premises, garages, warehouses, multi-

level underground parking lots, underground 

            ECHANICAL ENGINEERING 

 UDC 539.37:624.131.551 

 

PROPAGATION OF STRESS SHOCK WAVES IN ELASTOPLASTIC  

CONTINUOUS MEDIA WITH SPHERICAL SYMMETRY 
 

A.N.NABIYEV1, A.A.NABIYEV2 (1 –  Tashkent Institute of Chemical Technology; 

2 –  Tashkent State technical university named after Islam Karimov, Tashkent city, 

Republic of Uzbekistan)* 

Received: May 8, 2024; Accepted: Sep 23, 2024; Online: Oct 04, 2024. 

 

*Nabiyev Abdimital Nabiyevich –  DSc, Professor , a68609129@gmail.com, https://orcid.org/0009-0002-9944-544х; 

Nabiyev Abdumalik Abdumurodovich –   Assistant, abdumaliknabiyev24@gmail.com, https://orcid.org/0009-0005-6257-8216. 

mailto:a68609129@gmail.com
https://orcid.org/0009-0002-9944-544
mailto:abdumaliknabiyev24@gmail.com
https://orcid.org/0009-0005-6257-8216


MECHANICAL ENGINEERING 

Technical science and innovation. №3/2024       79  

shopping complex, transport interchanges and other 

large and complex structures) are quite problematic, 
since they require ensuring the complete safety of 

existing engineering communications. In this case, 

the main emphasis is on the applied significance of 

the methodology for the integrated design of tunnels 
and underground structures as a fragment of a single 

process of development of underground space.  

The methodology of integrated design also 
includes other questions about how to calculate the 

support of underground mine workings, how and on 

what principles to choose methods of construction of 
objects, how to carry out pile foundation construction, 

injection strengthening of soils, installation of 

supports in water areas (at depths exceeding hundreds 

of meters, including supports for bridges across sea 
straits, supports for the installation of drilling 

platforms, etc.) and how to assess the basic qualities 

and technical and economic feasibility of 
constructing tunnels and underground structures.  

For a joint decision on the choice of 

technological, architectural, structural and space-
planning solutions for the construction of critical 

objects, taking into account the properties of 

“plasticity” (the ability to undergo irreversible 

deformations) and creep, relaxation (changes in 
mechanical properties and state over time) of soil and 

rock massifs, it is also necessary to experimentally 

theoretical studies of the problems of shock wave 

propagation at high stresses and high strain rates [1-

7, 10, 13, 14, 20, 21].  
This article will outline the theory of one-

dimensional dynamic motion of a soil mass having 

elastoplastic properties during an explosion with 

spherical symmetry. 
 

Derivation of the Equation  

Taking into Account Tangential Stresses 
Let us select an infinitesimal element from a 

moving medium - soil, which occupies the entire 

space during an explosion of an explosive with two 
pairs of mutually perpendicular meridional sections 

and two concentric spherical surfaces. Normal and 

tangential stress are denoted through   and   with 

the corresponding index according to the standard in 

mechanics. 

Let us find out the general nature of the 
stressed state of an elementary element, the faces of 

which are the main areas and the main normal stresses 

act on them, respectively   r .  

Taking into account the invariance of the main 
stresses acting on the main platforms, after 

appropriate transformations we obtain the basic 

formula for motion during an explosion with 
spherical symmetry, taking into account tangential 

stresses in inclined areas [7]:  
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where, r  - distance from the origin of coordinates to 

the occurrence of motion, u  - displacement, t  - time, 

0  - initial mass density.  

According to the circle of Otto Christian More 
[8, 9]: 
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here, 
21,  - main stresses, which are determined by 

the formulas: 

 

   




 





 

22

2

22

1 4
2

1
,4

2

1
  rrrrrr      (3) 

 

We substitute these relations in (2) and find: 
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Let us consider the Prandtlya plasticity 

condition, or, what is the same, the limiting state 
condition of the soil, which is written in the form: 

vvk sin
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where, k  - adhesion coefficient, v  - angle of internal 

friction, 321    - main normal stresses (mn). 

When designating vvk sin,cos0    and 

nmnmnm

r    321 ,  plasticity 

conditions have the form: 
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r
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r    0                (3) 

If we introduce the notation 
mnmnmn

r    , which are also main stresses, 

formula (3) takes the 
form:  
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Using this equality, from (4) bearing in mind (4) we obtain: 
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(6) we substitute into (4) and take the partial 

derivative with respect to  : 
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The last relation of the partial derivative and 
(6), substituting into formula (1) we obtain: 
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Let us introduce the notation:  
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Then the latter takes the form: 
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Where, the mechanical parameter    

included in equations (7) shows that the presence of 

internal friction in the soil leads to faster braking of 
the movement caused by the explosion.  

Now we use the basic relations for a shock 

wave, which represent a discontinuity surface moving 
in a medium, upon passing through which all its 

physical parameters change abruptly. The surface of 

the rupture is called the shock wave front. 
First, we will use the law of conservation of 

mass of a selected particle on a shock wave: 

  
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 203
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rur
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System of equations (1), (5) and (8) contains 

the following unknown functions: main stresses 
r  

and  ; tangential stresses  r  (the law of pairing of 

tangential stresses is taken into account); 

displacement u  and density  , and therefore, it is 

not closed.  

To close the system of equations, it is 

necessary to accept as an additional connection the 

relationship between    and  ii  ,  at high 

dynamic stresses and high strain rates, for the case of 

loading and unloading of soils or rocks [20, 21]. 

Mechanical Formulation and Solution Method 

We consider the movement caused by the 

explosion of a charge in a homogeneous soil 
occupying the entire space, i.e., without taking into 

account the boundary surfaces. When a spherical 

charge of radius 
0r  explodes in the ground, it is 

assumed that at some moment, instantly, without 
changing volume, the charge turns into a high-

pressure gas. This gas expands according to the 

polytropic law with the polytropic index  .  

It is assumed that the resulting high pressure 
spreads throughout the environment with the 

formation of a shock wave.  

It is required to find the resulting motion of the 
medium.  

Soil is considered as a plastic gas. 

Consequently, during unloading, the density 

previously acquired by the particle does not change. 
Based on the properties of plastic gas, it follows that 

in the region of ground motion behind the shock 

wave, the density is a function of the Lagrange 
coordinate r  and does not depend on time. 

Let us turn to the tense state of the 

environment.  
Based on the results of experimental studies, 

the experimental relationship between hydrostatic 

pressure and medium density [2] takes the form: 
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Movements with spherical symmetry, 
conditions (9) and plasticity conditions are sufficient 

to determine stress as a function of density  
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Now let's move on to solving the problem.  

Taking into account the above, to solve (1) we 

multiply both sides of equation (7) by   2



ur , 

integrate over r  and, provided that 

   tRtrur  ,00  and    ttrr 00 ,   , we obtain 

an integro-differential equation: 
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Due to the symmetry of the problem, we restrict ourselves to studying the propagation of the wave to the 
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right. In this case we have the following initial and boundary conditions: 

 tptrruutrr frtr  ,0,,0,0, 00   

where,  tp f  - given time function. 

Expression (10) on the shock wave will take the form 
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Considering the latter and (10) together gives 
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The soil continuity equation in Lagrange 

variables in the case of spatial motion of cohesive 

soils, the application of which was proposed by 
academician X.A.Rakhmatulin, has the form:  
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Let's integrate this equation over r  and get: 
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From (11) by differentiating for speed and 

acceleration we obtain: 
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For the “shock wave” coordinate 
*r , formulas 

(11) and (12) give: 
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Now let us write down the dynamic conditions 
at the shock wave front, resulting from the laws of 

conservation of mass and momentum: 
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where,  
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rrdr    - stress corresponding to the 

disturbed part of the medium; 
**

rr    - shock wave 

front stress;     ******* ,2, riir G    - 

stress corresponding to the “disturbed part” of the 

medium;  
******

rrgr    - stress corresponding to 

the undisturbed part of the medium;  pr **  - 

stress equal to atmospheric pressure, 0** r  since in 

the “rest” region the soil is in its natural state. 

Then the dynamic conditions on the shock 
wave take the form [7]: 
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      (15) 

where,  *r  - medium density, 
*r  - shock wave 

coordinates, D  - shock wave speed, 
*

tu  - particle 

velocity on the shock wave,  tR  - cavity radius.  

According to (12) and (14), the velocity of a 

medium particle on a shock wave is: 
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Accordingly, we rewrite the conditions for 

voltage (15): 
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Substituting the values of acceleration (13) and voltage into (9), we obtain: 
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In these equations, for the sake of simplicity of 

notation, dependence (11) is used only in the 

integrands.  
From equation (16) it follows that the motion 

parameters are determined if the functions are known: 

 r  and  tR . 

First, let's look at a particular case - the density 

on the shock wave is constant (   constrb  ): 
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According to (12) and (14) we will have 
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Substituting the value  r  into equations (16) and under the boundary conditions - 

    Rtrurur
rr
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, we have: 
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We will assume that the pressure in the cavity 

is given and for the polytropic law of cavity 

expansion we obtain [11, 12]: 
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where, 0p  - gas pressure at the moment of 

instantaneous explosion. Due to the boundary 

condition  trr ,0 , it can be replaced by pressure 

kp , then we perform the following replacement 
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equation (18) can be reduced to the equation: 
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Obviously, (19) can be reduced to the form 

   RQyRFy '
 

The solution of which is given by the formula 
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From the coefficients of equations (19) it is 

clear that the integrals included in (20) in the lower 

limit give uncertainty. However, it can be shown that 
the integrals included in this solution, improper at the 

lower limit, tend to zero when the upper limit of 

integration tends to the lower.  

When 0

*

0 ,,0 rrrRt   we get the initial 

value 0y : 
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Since the coefficient of the derivative for the 

initial data  0rrR   vanishes, to solve 

numerically (19) it is necessary to indicate a method 

for determining derivatives of the desired function.  

To determine  0y , equation (19) (at 0 ) 

is differentiated by R  and into the resulting 

expression we substitute the initial value 

0
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 
  

  01

1

0

1
000

10

1'

0
31

12
23

31

8

rb

bb
Apy

br

b
y










  

Using this method, derivatives of all orders can 

be determined. 

Conclusions 

The main differences of this study are as 

follows: 
1. Taking into account the effects of tangential 

stresses acting on the sliding area, the equations of 

one-dimensional dynamic motion of the soil are 

derived. In the particular case when there are no 
tangential stress components in inclined areas during 

an explosion of an explosive substance, we have a 

similar equation of dynamic motion obtained in [21]. 
2. When modeling soil as an elastoplastic 

medium, the results of experimental studies to 

determine the mechanical properties of soils at high 

stresses in the    form 
 ii  ,

 and were used, 
carried out by the author under the direct supervision 

of Academician X.A.Rakhmatulin. 

3. When determining the radial stress at the 

shock wave front, experimental dependences  *  

and  **, ii   were used. 
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