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FEATURES OF ATOM SPECTRA Ca, Ba, Sr 

M.A. Tursunov1*, А.B.Zon 2, D.A. Tashmuxamedova1, А.Х. Xaydarov1, 

S.S. Pak1, Z.А. Аlimova1 
1Tashkent State Technical University, Universitetskaya st., 100095, Tashkent, Uzbekistan 

2Voronezh State University Department of Mathematical Physics Voronezh, Russia 

 

 Abstract. This paper deals with the issues of atomic spectroscopy of multiphoton 

ionization of alkaline earth atoms. The cycle of researches, which substantially complements the 

modern understanding of the physical essence of processes, is described. The analysis and 

generalization of the obtained experimental and available theoretical materials are carried out, 

and studies on the influence of the correlation of valence electrons on the process of multiphoton 

ionization of alkaline earth atoms are presented in detail. The appearance of intense 

intercombination transitions coincides in n with a sharp change in the magnitude of the quantum 

defect. Since an abrupt change in the magnitude of the quantum defect of a state is caused by the 

perturbing action of an extraneous level from another configuration, therefore, the appearance 

of intercombination transitions is due to the effect of the interaction of configurations. The 

results of experiments and their interpretation are given, namely: 

- the efficiency of excitation of forbidden intercombination transitions and allowed 

transitions; 

- the behavior of alkaline earth atoms within the L-S bond and the classification of the 

energy levels of these atoms; 

-collective effects in atoms and molecules and detection of the phenomenon of violation of 

the dipole approximation. 

The results of an experimental study of the intermediate region of the spectrum of the Ca 

atom provide information on the relative probability of spin-forbidden transitions and its 

dependence on the principal quantum number of the excited state. 

 

 Keywords: spectral dependence, three-photon ionization, multi-quantum transitions, 

two-photon processes, intermediate resonance level, cascade process, spectral width of 

radiation, transition oscillator, intercombination transitions. 

 

INTRODUCTION. In the experiments, the results of which are presented above, the 

process of three-photon ionization of alkaline earth atoms was investigated. When the frequency 

of the laser radiation was changed, intermediate resonances with bound states were observed, 

which manifested themselves in a sharp increase in the amplitude of the ion signal. 

In this case, the ionization process was of a resonant nature. Since in the future we are 

going to investigate the probability of excitation of certain states, it is necessary to discuss to 

what extent information on the population of the excited state can be obtained from such an 

integral characteristic as the ion yield. 

So, if excitation and ionization occur in different fields, moreover, separated in time, then 

it is obvious that the number of formed ions is proportional, in particular, to the probability of 

excitation of atoms in the first field. In the case of resonant ionization in one field, this is not so 



obvious, since ionization can occur due to the simultaneous absorption of three quanta of 

radiation. 

In other words, this is the question of the relationship between multiquantum and step (or 

cascade) transitions [1, 2]. Figure 1 shows a diagram of a three-photon transition from the 

ground state g to continuum 1 with an intermediate two-photon resonance with the r state. 

MATERIAL AND METHODS. In the case when the resonance detuning ∆ = wrg-2w 

(where w = wrg = Er– Еg) is much greater than the width of the level r, i.e. at ∆ »G, the 

multiquantum and cascade ionization processes are well distinguishable and the probability of 

ionization is the sum of the probabilities of these two processes Wn = Wm-Wk. 

Strictly speaking, for the same finite electron energy, these two processes should occur at 

different radiation frequencies. And, conversely, at the same frequency, multi-quantum and 

cascade processes at A » G will lead to different final energies of electrons (Fig. 1), which in the 

language of quasi-energies represent an optical repetition of the quasi-energy levels Eg and Er in 

an external field with a frequency wl - [1,2]. In the case when the detuning is comparable with 

the width of the resonance level (A ≤ G), the multiquantum and cascade processes lead to the 

same final electron energy and one should add not the transition probabilities, but the amplitudes 

Аgi = Аgr Аri + А'gi, 

 

where Аgi= V ( )3

gi
, Agr=V ( )2

gr
, V ( )k

m1 - composite matrix element К- th order. In this case, the 

transition probability will be equal not to the sum of the squares of the amplitudes, but to the 

square of the sum. 

Consequently, interference terms will appear, which, in fact, do not allow separating 

ionization into multiquantum and cascade, but require consideration of a single process of 

transition of an atom to their ground state 

 

 
Fig. 1. 

a) Scheme of three-photon ionization of a Ca atom with an intermediate resonance 

b) Scheme of three-photon ionization of a Ca atom with an intermediate resonance with 

the levels 3s5d1D2 and 3s6d1D2 at frequencies w1 and w2, respectively g into final I with the 

absorption of three quanta [1,2]. 

 

However, even in this case, one can try to introduce a quantitative criterion that will make 

it possible to single out one of the processes under consideration, similar to how it was done in 



Ref. [13], for resonant Raman scattering, comparing the lifetimes of the excited state caused by 

stimulated and spontaneous processes. 

 

1. Identification and analysis of dispersion dependences of atoms 

The lifetime in an excited state can be characterized by three quantities: the spontaneous 

relaxation time τδ or the natural width of the Gδ level, the time of the forced transition to the 

ground state τf or the field width Gf, and the ionization time τi by the ionization width Gi. 

If the width due to spontaneous relaxation is greater than the field and ionization widths 

Gδ> Gf, Gi, then the idea of the excitation of an atom to a real state is justified, and in the first 

approximation we can speak of a cascade process consisting in the excitation of a level and its 

subsequent ionizationzations. 

This representation, however, is valid only when the characteristic time τ of the 

ionization process is much larger than the reciprocal width of the level: τ »G-1 = τδ. In the case 

of τ ~ G, even if the condition Gδ »Gf, Gi is satisfied, the separation into multiquantum and 

cascade processes is impossible and they must be considered simultaneously. At τ «G, the 

multiquantum process of resonant ionization dominates. 

This can be shown more clearly as follows. The probability of a cascade ionization 

process is equal to the product of the probability of excitation of the r - Wgr state by the 

probability of ionization from this state Wri (Fig. 1): Wk - Wgr - Wri. These probabilities are 

equal [8]: 

                    𝑤𝑔𝑟 = 2𝜋
𝐺𝛿

𝛥2+1/4𝐺𝛿
2 |𝑣𝑔𝑟

(2)|2𝜏; 𝑤𝑟𝑖 = 2𝜋|𝑣𝑟𝑖|2𝜏    (1) 

Therefore, the total probability of a cascade transition is: 

 

   w kack.= 4𝜋2
|𝑣𝑔𝑟

(2)
|2|𝑣𝑟𝑖|2 𝐺𝛿𝜏2

𝛥2+1/4 𝐺𝛿
       (2) 

 

(here in after, it is taken into account that Gδ »Gi, Gf) 

The probability of resonant ionization in a weak monochromatic field can be represented 

as [9] 

 

                                    2=мw
|𝑣𝑔𝑟

(2)
|2|𝑣𝑟𝑖|2 𝐺𝛿𝜏

𝛥2+1/4 𝐺𝛿
2      (3) 

The ratio of the probabilities of cascade and direct ionization in the case of exact 

resonance ∆ = 0 is: 

                                      w kack / w mn = 2п Gτ,             (4) 

It is clearly seen from (4) that if the characteristic ionization time is much greater than the 

reciprocal width of the level, that is, G δτ »1, then the process of resonant ionization is of a 

cascade nature; with the inverse ratio Gδτ« 1, the resonant multiphoton process prevails. 

In the intermediate case Gδτ ~ 1 it is impossible to distinguish a multiquantum or cascade 

process, since the interference terms in the expression for the total probability will be essential. 

In a situation that is far from saturation Witl «1, the characteristic time of the ionization process 

will be determined by the duration of the laser pulse τ ~ tl. 

For an arbitrary ratio of the widths Gδ, Gf, Gi at large τ "G-1 and τ" G-1 times (G = max 

{Gδ, Gf, Gi}), the resonant ionization process was considered in detail in [13, 12], from the 



results of which It follows that the use of simple resonance formulas of the Breit-Wigner type (4) 

with one or another resonance width to describe the linear (in time) ionization regime in the 

general case is impossible. 

Each specific situation realized in the experiment requires a separate consideration. 

Let us consider the experimentally realized process of ionization of Ca using the example 

of two resonances with levels 4s5d1D2 and 4s6d1D2 at frequencies w1 = 21459.5 cm-1 and w2 

= 22494.9 cm-1. For the indicated levels, the probabilities of radiative decay and the oscillator 

strengths of transitions to the lower states are known [4], and therefore the most complete 

numerical estimates are possible. 

The natural widths of these levels, determined by spontaneous relaxation, are equal: for 

4s5d1D2 - Gδ = 4 10-3cm-1, for 4s6d1D2 - Gδ = 8 10-4cm-1. The nonresonant change in the 

energy of excited states in the field ε = 3-104 V cm-1, estimated by the asymptotic formula [13] 

δЕ = 1/4 ε2 / w2, is equal to δЕδd ≈ 2.2 ∙ 10-5 cm-1 and δЕGd ≈ 1.3 ∙ 10-5 cm-1. 

The polarizability of the ground state of the Ca atom at frequencies w1 and w2 is 

approximately the same and is equal to αо = 195 AU. [8]. Hence, the change in the energy of the 

ground state is δЕ0 = -1/4 α Е2 = - 2 ∙ 10-10 a.e. = 4-10-5 cm-1. As can be seen, the nonresonant 

change in the energy of the levels due to the dynamic Stark effect is much smaller than the 

natural widths of the excited states and, therefore, they can be neglected. 

The field width of levels 5d and 6d will be determined by the two-photon Rabi frequency 

[12]: Gfdsd ~ Ω(2) = 1[2 ( ) 222 4v+ , those. just like the nonresonant level shift, it quadratically 

depends on the field and at exact resonance (∆ = Еd – 2w = 0) is equal to Gf  = | ( )2

dv |=


pdp DD

2 , where D is the dipole matrix element of the transition, ∆p - detuning with intermediate state 

4s4p1P
0

1 . The matrix elements of the transitions can be estimated from the known 

oscillator strengths fik =-
2

1
12

2


+
kD

j

wik , where wik is the frequency of transition to → 1 J is 

the full moment of the upper level. To go 4s2 1S0-4s4p1P
0

1 , fδp =1.75, for 4s4p1p
0

1  - 4s5d1D2, fpd = 

0,27; and for 4s4p 1p
0

1  -4s6d1D2, f pd = 4,4-10-2 [49[. The estimates give the following field 

widths: for the level 5d – Gf ≈ 9∙10-4 sm-1, for 6d – Gf ≈ 8,4-10-4 sm-1. The fact that the field 

widths for the 5d and 6d levels are almost the same is explained by the fact that the difference in 

the strengths of the oscillators fpd1 > fpd2 compensated by the difference in detunings ∆р1 > ∆р2 

with intermediate level 4s4p1p
0

1  at frequencies w1 and w2. 

The ionization width of the levels is Gi = 
( ) 2
22 dEv . For non-hydrogen-like atoms, the 

VdE value can be calculated by semiempirical quantum defect methods using the Burgess – 

Seaton formula given in [5]. The resulting estimates give the following widths: for the level 5d – 

Gi = 8,3-10-5sm-1, for 6d – Gi= 4,1-10-5sm-1. 

 Thus, it follows from the derived widths that, under the conditions of our experiment, the 

level shift due to the dynamic Stark effect and the ionization width are an order of magnitude 

smaller than the field and natural widths, which are of the same order of magnitude. If for the 

level 5d - Gδ ≈ 3 Гf, then already for 6d - Gδ ≈ Gf, and for levels with a large value of Ω, the field 

width becomes larger than the natural width Gf » Gδ. This is due to the different dependence on 

the principal quantum number 



Gδ ~Ω-3 [134], Gf ~ Ω-3[2 [13]. The performed analysis shows that in our case Gf ≥ Gδ, 

2пGτ ~ 1 and it would seem that the division into multi-quantum and cascade processes is not 

justified. However, in deriving criterion (4), the non-monochromaticity of the laser radiation was 

not taken into account. The dye lasers used in the experiment have a spectral emission width ∆w 

~ 1 sm-1, which is much larger than all the widths calculated above. A detailed theoretical 

analysis of three-photon ionization with a two-photon intermediate resonance in a 

nonmonochromatic field was carried out in Ref [13]. 

2. Ionization of neighboring triplet and singlet states 

As a result of the analysis, the authors of [13] come to the conclusion that in the limit of 

large widths and low intensities (∆w » G), the coupled-coupled transition to the resonant state is 

not statistically associated with the transition from the excited state to the continuum. That is, the 

ionization process can be considered as consisting of two stages - excitation and subsequent 

ionization. 

3. Ionization level width 

In other words, if the characteristic interaction time is longer than the laser radiation 

coherence time, then the whole process will be incoherent. Two-photon excitation will 

nevertheless occur coherently due to the short lifetime of the intermediate virtual state, and the 

ionization step is not statistically related to the excitation step. 

Pulsed spectral width multimode dye laser ∆w ~1sm-1 has a coherence time τког ~ (∆w)-1 

33 Ps which is small compared to the pulse duration (10 ns) and, therefore, in our case (∆w » Gδ 

, Gi, Gf , δЕ), the process of resonant ionization will certainly not be coherent. Thus, for 

nonmonochromatic radiation, criterion (4) must be rewritten in the form ∆wτ » 1, provided that 

the field is weak (i.e. ∆w » Gi, Gf , δЕ). Taking into account all of the above, we have carried out 

numerical estimates of the total probability of resonant ionization through the level 5d - W = 6,7-

10-2см-1 and through the level 6d - W = 7,9 ∙ 10-2 см-1. At a density of atoms n0 = 109см-3, focus 

volume 10-4sm-3 and the ratio of the amplitude of the signal from the detector and the number of 

produced ions 

1 мВ -10 ions, the obtained probabilities correspond to ion signals with amplitudes A5d ~ 

700мВ, A6d 800 мВ, which is in good agreement with experiment. 

From the relative yield of ions to resonance with singlet and triplet states, provided that 

the strength of the oscillator of the transition to the singlet state is known, it is possible to 

estimate the strength of the oscillator of the transition to the triplet state. 

Indeed, resonances with triplet and singlet states having the same principal quantum 

number occur at close frequencies, the values of the effective principal quantum numbers of 

these states differ little, and therefore it can be assumed that the ionization of neighboring triplet 

and singlet states occurs with almost equal weight -peakness. 

Consequently, the difference in the amplitudes of the resonances is associated with the 

difference in the probabilities of excitation of triplet and singlet states. For the state 4s6d1D2 the 

strength of the transition oscillator is known 4s4p1P
0

1 -4sd1D2, f


pd
 = 4,4-10-2 [48]. From the ratio 

of the amplitudes of resonances with triplet and singlet states 6d, we estimated the oscillator 

strength of the intercombination transition 4s4p1P°-4sd3D2, f 

pd
 = 2,3∙10-3. Unfortunately, for 

other resonances in the Ca atom and for all those registered in Sr atoms; Ba, we do not know the 

oscillator strengths of the allowed transitions. Therefore, to obtain the values of the oscillator 

strengths for other intercombination transitions without absolutizing the parameters of laser 

radiation, atomic beam and detector is not possible. But, as will be shown below, valuable 



information can also be obtained from the relative values of the probability of intercombination 

transitions. For example, by tracing how this probability changes along the n0 and series of 

triplet states.  

The degree of localization of such deviations from regularity contains information about 

the number of interacting levels of various configurations. The magnitude of the quantum defect 

can serve as a measure of how strongly the state is perturbed. 

μ = n – n* (n*= ny ER / , n* - effective principal quantum number. Shows the 

dependences of the magnitude of the triplet (dashed line) and singlet (solid line) levels n0 and of 

the series of Ca, Sr, and Ba atoms on the value of the principal quantum number n. All three 

dependences demonstrate a sharp change in the magnitude of the quantum defect with the 

growth of p. 

 

RESULTS. It is known that in the one-electron approximation, disregarding the 

interaction of configurations, the magnitude of the quantum defect weakly depends on n, 

decreasing monotonically with increasing n [13]: μ = μ0 + μ1 / n
2 + μ2 / μ

4 +…. The jumps in the 

magnitude of the quantum defect with a change in n can only be caused by the effect of the 

interaction of configurations. The dependences shown in show that in the regions of the spectrum 

of Ca, Sr, and Ba atoms studied by us in the experiment, the one-electron states n0 and 1,3D2 are 

very strongly perturbed and the one-electron approximation is not applicable to their description. 

The dependences μ (n) contain empirically obtained information on the nature and 

strength of the interaction of configurations and will be used by us in the future to interpret the 

experimental results. 

 

CONCLUSION The results of an experimental study of the intermediate region of the 

Ca spectroatom provide information on the relative probability of spin-forbidden transitions and 

its dependence on the principal quantum number of the excited state. In the Sr atom, resonances 

with triplet states corresponding to the two-photon intercombination transitions 5s2 1S0 - 

5snd3D2 are considered. As with Ca, the amplitudes of these resonances vary greatly depending 

on the value of the principal quantum number of excited states. The appearance of intense 

intercombination transitions coincides in n with a sharp change in the magnitude of the quantum 

defect. Since an abrupt change in the magnitude of the quantum defect of a state is caused by the 

perturbing action of an extraneous level from another configuration, therefore, the appearance of 

intercombination transitions is due to the effect of interaction of configurations. 
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