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INCREASING THE ROUGHNESS OF THE PROCEDURE FOR EVALUATING A 

VECTOR OF THE CONDITION OF OBJECTS TO THE INFLUENCE OF 

UNCERTAINTY FACTORS 

 

U.F.Mamirov 
                Tashkent state technical university, 100095, 2 str. University, Tashkent, Uzbekistan 

 

Abstract: Algorithms for increasing the roughness of the procedure for assessing the state vector 

of control objects to the influence of uncertainty factors are given. Expressions are obtained for 

extended state vectors and observations. Stable inversion algorithms are given for a 

nondegenerate block matrix with the allocation of its left and right zero divisors of maximum rank. 

The presented stable computational procedures allow us to regularize the problem of synthesis of 

algorithms for estimating the parameters of regulators in adaptive control systems with a 

customizable model and to improve the quality indicators of control processes under conditions 

of parametric uncertainty. 

 

Keywords: state vector of objects, increasing the roughness of the evaluation procedure, 

uncertainty factors. 

 

I. Introduction 

Currently, there are numerous approaches to valuation in the face of uncertainty. However, 

all of them are based on the use of certain system models and are tied to their specific 

implementations. In particular, the founder of random signal filtering, N. Wiener considered the 

possibility of creating an optimal filter based on the existing full implementation of a random 

process [1]. The well-known Kalman-Bucy filtering method [2] works already in real time, but its 

action is based on a priori information about the studied object.  

For linear systems with a Gaussian (normal) input or noise, the Kalman filter is optimal [1-

3]. Thus, a purely probabilistic approach, being a convenient mathematical formalization of a real 

situation, does not cover practically important cases of uncertainty. The task of estimating the 

vector of a linear system is much more complicated in statistically uncertain situations when there 

are only estimates of the statistical characteristics of noise and the initial state of the system. 

 

II. Problem definition 

Consider a linear model of an object with parametric uncertainty of the form: 

kkkk wuBxAx ++=+

~~
1 , 0

00|0 xx = ,     (1) 

kkk vHxy += ,      (2) 

in which  mln RuRyRx  ,,  - vectors of object state, object output and control; n
k Rw  , 

l
k Rv   - mutually independent white-noise Gaussian sequences in the equation of the object and 

in the equation of observation, for which  

  0
0

0
0 xxM = ,   00000 ))(( PxxxxM T =−− , 

    0 kk vMwM ,     −= kk
T

k QwwM ,     −= kk
T

k RvvM , 

in which  kQ , 0P  - positive semidefinite matrices; Is a positive definite matrix.  

Assume that the parameters of the control object (1) A
~

 and B
~

 have the form AAA += 0

~

, BBB += 0

~
, in which 00 , BA  - specified nominal values of the parameters where the object in 

the absence of parametric disturbances has the desired transient characteristics; BA  ,  –

quasistationary unknown matrices of perturbed object parameters. 
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Kalman score kx̂  for state vector kx  is unbiased and optimal in terms of the minimum 

mean square error [3-6]: 

 )ˆ()ˆ(0 kk
T

kk xxxxMJ −−= , 

in which kx̂  – optimal condition assessment.  

For the nominal model, the Kalman estimate kx̂  calculated according to well-known 

formulas [4,6]: 

 kkkkkk xHyKuBxAx ˆ
~

ˆ
~

ˆ 1 −++=+ , 0
00|0ˆ xx = ,    (3) 

1−= k
T

kk RHPK ,      (4) 

kkk
T

k
T

kkk QHPRHPAPPAP +−+= −
+

1
1

~~
. 0

0, kk PP = .   (5) 

We form using linear feedback as  

xkuu T
kk −= k1,  

internal control loop, the equations of which are of the form [5,6]:  

kkk
T
kk wuBxkBAx ++−=

+ ,10001 ][ , 0
00|0 xx = ,   (6) 

kkk vxHy += ,     (7) 

The internal circuit state estimator is a Kalman-Bucy filter built for the internal circuit 

reference model [4-6]: 

k
M

kkkk
М

k uBykxHkAx ,11

~
]

~
[ˆ ++−=

+ ,    (8) 

kk xHy = ˆˆ , 1~ −= k
T

kk RHPk , 

kkk
T

k
TM

kk
M

k QHPRHPAPPAP +−+= −
+

1
1 )( . 

We introduce extended state and observation vectors ),(, kkkp xxx = , ),(, kkkp yyy = .  The 

serial connection of the internal circuit and the Kalman-Bucy filter forms a dynamic system 

described by equations of the form: 

kkpkppkp wuBxAx ++=+ ,1,1, ,     (9) 

kkppkp vxHy += ,, ,      (10) 

in which  





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


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−
=
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Bp , 








=

H

H
H p

0

0
.  (11) 

A parallel reference model is defined by equations of the form: 

kp
M
k

M
p

M
k uBxAx ,11 +=+ , 

M
k

M
k Hxy = , 

in which matrix M
pA  obtained by setting  MA  in expression for pA  (11).  It is easy to verify that 

for 0,0 BB k =  the conditions for the full adaptability of the internal circuit are fulfilled [6,7]. Note 

that in the general case, the reference model is non-stationary.  

For the expanded nominal model (9), (10), one can obtain the following estimate:  

 kpkkkpkppkp xHyKuBxAx ,,1,1, ˆˆˆ −++=+ ,    (12) 

1−= k
T

kk RHLK ,            (13) 

QHLRHLLPLAL kk
T

k
T
ppkpk

1
1

−
+ −+= , 00 PL = .    (14) 

In [5-8] it is shown that the main minimization tool when using the extended object model 

is the mutual coordinate-wise compensation of vector components kx  and kx  extended state 

vector kpx , . 
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When using formulas (12) - (14), the optimal estimate of the initial state vector kx̂  – 

systems (1) at nominal values of matrices 0A , 0B , 0C  obtained after partial mutual compensation 

of the components of the assessment of the extended state vector kpx ,ˆ : 

kkkp xxx += ˆˆˆ , .      (15) 

Assessment Vectors kx̂  and kxˆ  obtained as a result of vector decomposition kpx ,ˆ  from 

(12). If system (1), (2) is considered with parametric uncertainty ( CBA  ,, ), then estimate 

(15) becomes biased, since the mutual compensation of vectors is violated kx̂  and kxˆ .  

To get rid of this, an additional correction of the obtained estimate of  kpx ,ˆ  the extended 

state vector is needed [8]. As a new estimate, instead of (15) we will consider an expression of the 

form:  

  









==

k

k
kpkp

x

x
DDxDx

ˆ

ˆ
ˆ~

21,, ,     (16) 

in which kpx ,
~  – adjusted estimate vector for the state vector kx ,  21 DDD =  – custom dimension 

parameters matrix nn 2 .  

Physically introducing matrix D means transforming kx  with the matrix  1D  and 

conversion of kx  with the matrix 2D  in order to improve previous grades  kx̂  in the presence of 

uncertainty. For optimal tuning, we consider the minimization problem with respect to D of the 

quadratic functional [1,3,8]: 

}]ˆ[]ˆ[{ ,,
T

kpkkpk xHDyxHDytrMJ −−= .    (17) 

At each sampling step k, the output vector is measured ky  and the evaluation vector is 

computed kpx ,ˆ  for an extended model of an object. Next, the true measured value 1l  of the vector 

ky  is compared with its analogue, obtained on the basis of the estimate of the expanded state 

vector (12) by the formula kpkpk xHDxHy ,, ˆ~ˆ == . Based on (17) we get:  

 TTT
kpkp

T
kkp

T
kk HDxHDxyMHDxyyMtrJ ,,, ][]2][ +−= .   (18) 

From here, using the matrix pseudoinverse operation, we obtain 
++= ]ˆˆ[ˆ][)( ,,,

T
kpkp

T
kpk

TT xxxyMHHHD .    (19) 

Formula (19) contains a matrix )( HH T , which is most often not a full-rank matrix, since 

usually not all coordinates of the state vector are subject to observation. Therefore, it is possible 

that some rows of the matrix D consist of zero elements. Then an additional correction of the 

estimate of the state vector by formula (16) is possible not for all coordinates of the state vector, 

but only for those that correspond to nonzero rows of the matrix D.  

This is a disadvantage of the proposed method in solving the estimation problem. Although 

in some cases such a solution is still possible even if there are zero rows in the matrix D. 

 

III. Solution of the task 

Expression (19) contains a pseudoinverse matrix ++ = )( HHF T  to form tunable parameters 

D [9-12]. It is clear that the quality of control processes of the synthesized adaptive control system 

substantially depends on the accuracy of determining the parameters (19). In view of this 

circumstance, it becomes necessary to use efficient pseudoinverse algorithms for square matrices. 

The matrix )( HHF T=  in expression (19) is a degenerate square matrix, i.e. 

nmrankFFRF nn ==  ,0det, .    (20) 
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Let us consider stable algorithms connecting the inverse operation of a nondegenerate 

block matrix composed of a given matrix and its left and right zero divisors of maximum rank. We 

form the block matrix [13-15]: 

)2()2(

00

mnmn

T
R

T
L

L

R
T

R
F

FF

F

FF −−







=








,    (21) 

In which 
RL FF ,  – left and right zero divisors of maximum rank, i.e. 0=FFL

,  

mnrankFL −= ;      (22) 

0=RFF , mnrankFR −= .     (23) 

Further, it is always assumed that the divisors 
LF  and 

RF  have maximal ranks in the sense 

of (20), (22), (23). In this case, the following rank identity is fulfilled [16]:  

mn
F

FF
rank

L

R
T

−=







2

0
.     (24) 

Then the pseudoinverse matrix nnRF +   has the form: 

TFTF =+ ,      (25) 

in which  
11 ))(()( −− +=+= T

LR
T
R

TT
L FFFFFFT   

- non-unique invertible matrix; Is an arbitrary square invertible matrix. 

If the conditions of semi-orthogonality are satisfied 

mn
TT

LLR
T
R IFFFF −===  , 

then the formula for calculating the pseudoinverse matrix (25) takes the following form: 

L
T

R
T

LR FFFFFF  −+= −+ 1))(( .     (26) 

For simplicity, excluding the matrix  , from consideration, instead of (26) we write the equation 

LR
T

LR FFFFFF −+= −+ 1))(( . 

IV. Conclusion 

The presented stable computational procedures allow us to regularize the problem of 

synthesis of algorithms for estimating the parameters of regulators in adaptive control systems 

with a customizable model and to improve the quality indicators of control processes under 

conditions of parametric uncertainty. 
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