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INVESTIGATION OF AN ELECTROMAGNETIC TWO-STROKE VIBRATING 

ACTIVATOR IN OSCILLATORY MODE 

 

A.I.Rakhmatullayev1,  K.G.Abidov1 

 1Tashkent State Technical University 

 

Abstract. The article considers the results of the study of electromagnetic vibration exciter with 

sequentially included capacitor in the electrical circuit, consisting of mechanical and electrical 

subsystems. It is shown that by means of the Lagrangian-Maxwell equation the interconnection 

between mechanical and electric subsystems can be realized. The relations describing processes 

of establishment of amplitudes and phases of oscillations both in mechanical and in electric 

subsystems are deduced. The equations connecting the output (amplitude) of vibration of the 

vibrating exciter with its input (voltage) of the network are presented. As a result, the formulas 

allowing making corrections at the solution of the system describing operation of the 

electromagnetic vibrating exciter in two-stroke mode are presented. 

Key words: vibrating exciter, vibrating system, Lagrangian-Maxwell equations, electromagnetic 

processes, inductance, equations linking amplitude and phase parameters, exponential function, 

integration, one-act operation mode, and capacitor. 

Electromagnetic vibrators have been increasingly employed in the instrument in recent 

years-and in mechanical engineering. An elastic mechanical circuit system often has to be set up 

far enough away from the resonance, depending on the specific requirements of the vibration 

control system. Therefore a method suitable for calculating these vibrators needs to be 

developed. 

Lagrangian-Maxwell equations (1) describe the interlinked electromagnetic and 

mechanical processes within the electromagnetic vibrator which is an electromechanical system. 
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Where the variables q x- charge and travel respectively, q=i and x =ϑ their speeds, 

e=external E.E.S., f external mechanical force, R and H are the so-called electrical and 

mechanical dissipation functions of the Relay respectively 
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Where variables q x-function Lagrange-L=(T+W)-(∏+ +V), T=
1

2
 𝑚𝜗2 is kinematic 

energy of mechanical moving part of vibrator;  m-mass, ∏ =
1

2
𝑐𝑥2- potential energy, c-hardness, 

W=
1

2

𝜔2𝑖2

𝑅𝑀
=

1

2
𝑅𝑀𝛷

2-magnetic energy of electric part of vibrator, 𝛷 =
𝜔∗𝑖

𝑅𝑀
, 𝜔 𝛷 = 𝛹, ω - number 

of turns, Φ - magnetic flux, 𝑅𝑀 - magnetic resistance of the flux path, 𝑅𝑀 = 𝑅𝑐+
2(𝑥0+𝑥)

𝜇0𝑆
 , t.e. 

consists of the magnetic resistance of steel and gap, V-electric energy of the capacitor. Let the 

electromagnetic vibrator two-pin, does not contain in the electrical circuit of the capacitor, 

therefore, V = 0; it is not affected by external mechanical force, f = 0; the electrical circuit 



operates alternating DC voltage, the sign of which changes with the frequency of the vibrator 

moving part. In this way the auto oscillation mode is investigated. 

So, the Lagrange function of this vibrator 

L=
1

2
 𝑚𝜗2+

1

2
[
2(𝑥0+𝑥)

𝜇0𝑆
+ 𝑅𝑐] 𝛷

2 −
1

2
𝑐𝑥2                                                 (2) 

By putting it and its dissipative functions in the system, we will get 
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(3) 

 

Although the circuit of the electromagnet is alternating DC voltage with high harmonics, 

in the threading clutch Ψ the corresponding high harmonics are strongly attenuated. Indeed, if we 

assume r=0 for simplicity, then we obtain the following:  

𝛹 =
4𝐸

𝜋
∫(𝑐𝑜𝑠𝜔𝑡 −
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i.e. the amplitude of the third one closest to the main harmonic is almost an order of 

magnitude smaller than the first one. Therefore, in the first approximation, we will not consider 

their influence. Therefore, we can assume that the voltage is acting e=
4𝐸

𝜋
𝑐𝑜𝑠 𝜔𝑡 

In the theory of nonlinear mechanics we add the normal substitution of variables to solve 

the system of equations (1).   

x=A(t)cos[𝜔𝑡 + 𝜓(𝑡)],
𝑑𝑥 

𝑑𝑡
= −𝐴(𝑡) 𝜔sin [𝜔𝑡 + 𝜓(𝑡)],                                        (4) 

𝛹 = 𝐵(𝑡) cos[𝜔𝑡 + 𝜑(𝑡)] ,
𝑑𝛹 

𝑑𝑡
= −𝐵(𝑡)𝜔 sin[𝜔𝑡 + 𝜑(𝑡)],                                (5) 

By means of which the system of equations (3) for instantaneous variables can be 

replaced by a system of equations for amplitudes A(t), B(t) and phases Ψ(t), φ(t), and solved 

with respect to their derivatives. 

The square of the threading clutch is shown over the period graph in Fig. 1. But in the 

two-stroke vibrator in one half-period in one core works curve ≪a≫этого graphics, in the other 

half-period in the other core - curve ≪б≫ . So the last curve can be flipped (curve ≪в≫). For 

the period T the curve ≪а+в≫можно should be described with the function 
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We differentiate the second expressions (4) and (5).  
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Fig.1. Slotting curve of the two-stroke vibrating activator. 

Let's substitute the expressions x, 
𝑑𝑥 

𝑑𝑡
,  
𝑑2𝑥 

𝑑𝑡2
, и  𝛹, 

𝑑𝛹 

𝑑𝑡
, 
𝑑2𝛹 

𝑑𝑡2
, in a system 

 (3) 
𝑑𝐴 

𝑑𝑡
sin(𝜔𝑡 + 𝜓) + +

𝑑𝜓 

𝑑𝑡
𝐴𝜔 cos(𝜔𝑡 + 𝜓) = 

𝜋𝐵2 ∑
1

2𝑛−1
cos (2𝑛−1)(∞

𝑛=1 𝜔𝑡+𝜑) 

4𝜔2𝜇0𝑚𝑆𝜔
  - 𝐴

ℎ 

𝑚
sin(𝜔𝑡 + 𝜓),  

(9)                             

𝑑𝐵 
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sin(𝜔𝑡 + 𝜑) +

𝑑𝜑 

𝑑𝑡
𝐵 cos(𝜔𝑡 + 𝜑) =

4 

𝜋
sin(𝜔𝑡) − 𝜔Вcos(𝜔𝑡 + 𝜑) − 

−
𝑅

𝜔2
𝐵𝑠𝑖𝑛(𝜔𝑡 + 𝜑){

2

𝜇0𝑆
∗ [𝑥0 + 𝐴 cos(𝜔𝑡 + 𝜓)] +𝑅𝑐} − 

−
𝑅

𝜔2
𝐵𝑐𝑜𝑠(𝜔𝑡 + 𝜑)

2

𝜇0𝑆
𝐴 𝑠𝑖𝑛(𝜔𝑡 + 𝜓),                                                    (10) 

Differentiating the first expression and comparing it with the second one both in (4) and 

(5), we get 

𝑑𝐴 

𝑑𝑡
𝑐𝑜𝑠(𝜔𝑡 + 𝜓) −

𝑑𝜓 

𝑑𝑡
𝐴 sin(𝜔𝑡 + 𝜓) = 0                                           (11) 

𝑑𝐵 

𝑑𝑡
cos(𝜔𝑡 + 𝜑) −

𝑑𝜑 

𝑑𝑡
𝐵 sin(𝜔𝑡 + 𝜑) = 0                                           (12) 

These equations should be considered as constraints imposed respectively on functions 

А(t), 𝜓(𝑡), and B(t), 𝜑(𝑡) in the sense that
𝑑𝐴 

𝑑𝑡
≪ 𝐴𝜔,

𝑑𝜓 

𝑑𝑡
≪ 𝜔, т. е. ∆𝐴 ≪ 𝐴, ∆𝜓 ≪ 2𝜋  for the 

period 𝑇 =
2𝜋 

𝜔
 and also, 

𝑑𝐵 

𝑑𝑡
≪ 𝐵𝜔,

𝑑𝜑 

𝑑𝑡
≪ 𝜔 , т. е. ∆𝐵 ≪ 𝐵, ∆𝜑 ≪ 2𝜋 for the period 𝑇 =

2𝜋 

𝜔
 . 

Solving in pairs (9), (11) and (10), (12), we find equations in standard form presented with 

respect to derivative parameters of mechanical and electrical oscillations. 
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sin(𝜔𝑡 + 𝜓) +

 
𝜋 

4
𝐵2∑

1

2𝑛−1
∞
𝑛=1  

𝜔2𝜇0𝑚𝑆𝜔
∗  cos(2𝑛 − 1) (𝜔𝑡 + 𝜑)] sin(𝜔𝑡 + 𝜓) 

𝑑𝜓 

𝑑𝑡
 = −

1

𝐴
[𝐴

ℎ 

𝑚
sin(𝜔𝑡 + 𝜓) +

 
𝜋 
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∞
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}
 
 

 
 

           

(13) 



𝑑𝐵 

𝑑𝑡
= {

𝜋 

4
𝐸 sin𝜔𝑡 − 𝐵𝜔cos(𝜔𝑡 + 𝜑)  −

𝑅

𝜔2
𝐵𝑠𝑖𝑛(𝜔𝑡 + 𝜑) {

2

𝜇0𝑆
 ∗ [𝑥0 + 𝐴 cos(𝜔𝑡 + 𝜓)] +𝑅𝑐} - 

−
2𝑅

𝜔2𝜇0𝑆
Bcos(𝜔𝑡 + 𝜑)𝐴 sin(𝜔𝑡 + 𝜓)}  𝑠𝑖𝑛(𝜔𝑡 + 𝜑) 

𝑑𝜑 

𝑑𝑡
= {

4 𝐸

𝜋𝐵
sin𝜔𝑡−𝜔cos(𝜔𝑡 + 𝜑)  −

𝑅

𝜔2
𝑠𝑖𝑛(𝜔𝑡 + 𝜑) {

2

𝜇0𝑆
 ∗ [𝑥0 + 𝐴 cos(𝜔𝑡 + 𝜓)] +𝑅𝑐}+ 

+
2𝑅

𝜔2𝜇0𝑆
Bcos(𝜔𝑡 + 𝜑)𝐴 sin(𝜔𝑡 + 𝜓)}  𝑐𝑜𝑠(𝜔𝑡 + 𝜑)        (14) 

Proceeding from the above limitations and considering the oscillation parameters as 

invariable over the period, the right parts of equations (13) and (14) assiduously integrate them 

over the period T. As a result, in the first approximation we will get 

𝑑𝐴1

𝑑𝑡
= −

ℎ𝐴1

2𝑚
+

𝜋𝐵1
2

8𝜔2𝜇0𝑚𝑆𝜔
sin(𝜑1 − 𝜓1)

𝑑𝜓1

𝑑𝑡
=  −

𝜋𝐵1
2

8𝜔2𝜇0𝑚𝑆𝜔𝐴1
cos(𝜑1 − 𝜓1)     

} , (15)      

𝑑𝐵1

𝑑𝑡
= −

𝑅

2𝜔2
(
2𝑥0

𝜇0𝑆
+ 𝑅𝑐)𝐵1 +

 4

2𝜋
𝐸𝑐𝑜𝑠𝜑1

𝑑𝜑1

𝑑𝑡
= −

𝜔

2
−

 4

2𝜋𝐵1
𝐸𝑠𝑖𝑛𝜑1                            

} . (16)  

   Using these equations one can investigate both the established mode, dψ, and the 

processes of amplitude and phase setting of oscillations. In the established mode 
𝑑𝐴1

𝑑𝑡
=

𝜑1

𝑑𝑡
=

𝑑𝐵1

𝑑𝑡
=
𝑑𝜑1

𝑑𝑡
= 0  therefore cos(𝜑1 − 𝜓1) = 0,       hence(𝜑1 − 𝜓1) =

 𝜋

2
 or(𝜑1 − 𝜓1) =

3 𝜋

2
 .  But the 

last ratio for phases does not satisfy the first equation (15).  

𝐴1 =
𝜋𝐵1

2

4𝜔2𝜇0𝑚𝜔𝑆ℎ
; (𝜑1 − 𝜓1) =

 𝜋

2
                                                       (17) 

From the system (16), we find 

𝐴1 =
𝜋 𝐸

4√𝜔2+
𝑅2

2𝜔4
(
2𝑥0
𝜇0𝑆

+𝑅𝑐)

=
4𝐸𝐿0

𝜋√𝜔2𝐿0
2+𝑅2

.                                          (18) 

𝜑1 = 𝑎𝑟𝑐𝑡𝑔
−𝜔𝐿0

𝑅
                    

Where 𝐿0 =
𝜔2 

2𝑥0
𝜇0𝑆

+𝑅𝑐
  - static vibrator electromagnet inductance 

 Now the solution (18) by substituting (17) we get 

𝐴1 =
4Е2𝐿0

2

𝜋𝜔2𝜇0𝜔𝑆ℎ(𝜔2𝐿0
2+𝑅2)

;                                                                   (19) 

  Applied to the standard form of equations (13) and (14), the perturbation theory 

method[2] makes it possible to find high approximations of the necessary vibration parameters 

A(t), B(t), 𝜓(t) φ(t). Following the process, we assume that, as in the preceding average, these 

oscillation parameters in the right parts of equations (13) and (14) are invariable and identical to 

those found above, and we decompose these right parts into Fourier rows and define the 

summation variables. 



𝑑𝐴2

𝑑𝑡
(𝑡) =

𝐴2 ℎ

2𝑚
cos 2(𝜔𝑡 + 𝜓1) −

𝜋𝐵1
2

8𝑝
sin(2𝜔𝑡 + 𝜑1 + 𝜓1) + 

𝜋𝐵1
2

24𝑝
sin(2𝜔𝑡 + 3𝜑1 − 𝜓1) − ⋯ ,

𝑑𝜓2(𝑡)

𝑑𝑡
= −

 ℎ

2𝑚
sin 2(𝜔𝑡 + 𝜓1) −

𝜋𝐵1
2

8𝑝𝐴1
cos(2𝜔𝑡 + 𝜑1 + 𝜓ʃ) −

−
𝜋𝐵1

2

24𝑝𝐴1
cos(4𝜔𝑡 + 3𝜑1 − 𝜓1) + ⋯ ,

𝑑𝐵2(𝑡)

𝑑𝑡
= −

2𝐸

𝜋
cos(2𝜔𝑡 + 𝜑1) −

𝜔𝐵1

2
sin(𝜔𝑡 + 𝜑ʃ) +

𝑅

2𝐿0
𝐵1cos 2(𝜔𝑡 + 𝜑1) −

−
𝑅

𝐾
𝐵1𝐴1cos(3𝜔𝑡 + 𝜑1 + 𝜓1) 

𝑑𝜑2(𝑡)

𝑑𝑡
=

 2𝐸

𝜋𝐵1
sin(2𝜔𝑡 + 𝜑1) −

𝜔

2
cos(𝜔𝑡 + 𝜑1) −

𝑅

2𝐿0
sin 2(𝜔𝑡 + 𝜑1) −

−
𝑅

𝐾
𝐴1sin(3𝜔𝑡 + 2𝜑1 + 𝜓1) }

 
 
 
 
 
 

 
 
 
 
 
 

(20)  

Where: 𝜌 = 𝜔𝜇0𝜔
2𝑚𝑆,  k=𝜔2𝜇0𝑆. 

By integrating them, we get them: 

A(t)=A1+A2(t)=A1+
 𝐴ℎ

4𝜔𝑚
sin 2(𝜔𝑡 + 𝜓1) +

𝜋𝐵1
2

16𝑝𝜔
cos(2𝜔𝑡 + 𝜑1 + 𝜓1) −

𝜋𝐵1
2

48𝑝𝜔
cos(2𝜔𝑡 + 3𝜑1 +

+𝜓1)+. . . , 

𝜓(𝑡) = 𝜓1 + 𝜓2(𝑡) = 𝜑1 −
𝜋

2
+

 ℎ

4𝜔𝑚
cos 2(𝜔𝑡 + 𝜓1) −

𝜋𝐵1
2

16𝑝𝐴1𝜔
sin(2𝜔𝑡 + 𝜑1 + 𝜓1)- 

- 
𝜋𝐵1

2

48𝑝𝐴1𝜔
sin(𝜔𝑡 + 3𝜑1 − 𝜓1)−. . . , 

𝐵(𝑡) = 𝐵1 + 𝐵2(𝑡) = 𝐵1 −
𝐸

𝜋𝜔
sin(2𝜔𝑡 + 𝜑1) +

𝐵1𝑍

2
sin[2(𝜔𝑡 + 𝜑1) + 𝜉] −  

− 
𝑅

𝑘𝜔
𝐵1𝐴1sin(𝜔𝑡 + 𝜓1) +

𝑅

3𝐾𝜔
𝐵1𝐴1sin(3𝜔𝑡 + 2𝜑1 + 𝜓1), 

𝜑(𝑡) = 𝜑1 + 𝜑2(𝑡) = 𝜑1 −
𝐸

𝜋𝐵1𝜔
cos(2𝜔𝑡 + 𝜑1) +

𝑍

2
cos[2(𝜔𝑡 + 𝜑1) + 𝜉𝜐] −  

− 
𝑅

𝐾𝜔
𝐴1cos(𝜔𝑡 + 𝜓1) +

𝑅

3𝐾𝜔
𝐴1sin(3𝜔𝑡 + 2𝜑1 + 𝜓1),                                                                

(21) 

Where :    

 𝑍2 = 𝜔2 +
𝑅2

𝐿0
2 ;  𝜉 = 𝑎𝑟𝑐𝑡𝑔

𝜔𝐿0

𝑅 
 . 

Having substituted them in formal expressions of solutions (4) and (5), we find it finally: 

𝑥 = 𝐴1cos(𝜔𝑡 + 𝜓ʃ) +
𝐴1ℎ

8𝑚𝜔
sin(𝜔𝑡 + 𝜓ʃ) +

𝜋𝐵1
2

2∗16𝑝𝜔
cos(𝜔𝑡 + 𝜑1) −

−
𝜋𝐵1

2

48𝑝𝜔
∗
1

2
cos(𝜔𝑡 + 3𝜑1−2𝜓1) +                                  high

Ψ = 𝐵1cos(𝜔𝑡 + 𝜑1) − 
𝐸

2𝜋𝜔
sin𝜔𝑡 +

𝐵1𝑍

2𝜔∗2
sin(𝜔𝑡 + 𝜑1 + 𝜉) +         

+
𝑅

𝐾𝜔2
𝐵1 ∗ 𝐴1sin(𝜑1 − 𝜓1)  +                                                  high }

  
 

  
 

                          (22) 



Based on these refined solutions, it is now possible to explain first approximations of the 

amplitudes of the fundamental harmonics (17) and (18) 

  Result of the work: 

  1. Throughout the recorded works devoted to the study of electromagnetic vibrators, 

represented by species equations (3), the latter were solved artificially (the second equation is 

separate from the first): either it was assumed in the second equation r = 0, or it was transformed 

into an independent parametric equation. 

  The general dependence of the oscillation half-span on the parameters was obtained for the first 

time because of the joint solution of the equations: external voltage, excitation frequency, 

friction, electrical circuit resistances. 

  2. The theoretical and practical correlation (19) shows a sharp frequency limit from above 

in the field of application of vibrators, which is imposed on the oscillation amplitude. As can be 

seen from (19), if the active resistance of the electromagnet is significant in comparison with the 

inductive resistance, then half a span. A, we can consider that it is inversely proportional to the 

excitation frequency in the first degree; if the inductive resistance of the electromagnet is much 

greater than the active resistance, then semi-span A is inversely proportional to the excitation 

frequency in the cube, i.e. for such vibrators at high frequencies of excitation is impossible to 

obtain a sufficiently large oscillation amplitude. 

3. The correlation (19) can be of great practical importance because it helps to find 

friction in this vibrator design, which previously caused great difficulties to be identified, based 

on the data on the frequency of excitation and oscillation amplitude known from the experience. 

4. The system of perturbation theory has obtained clarifications of the solutions. 

Specifications demonstrated complete interconnection of electromagnetic and mechanical 

processes, and the effect of not only the electrical component on the mechanical part. 
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