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UDC 621.378.373:535 

PROBLEMS OF COEXISTENCE OF SUPERCONDUCTIVITY AND MAGNETIC 

ORDERING OF COPPER SUBLATTICES IN YBa2Cu3-XFeXO7-X CERAMICS 

 

M.A., Ruzieva, Q.Kh. Bobomurodov, S.Q. Bobomurodov, R.A. Shokirov 

 

Abstract. The article studies the problems of coexistence of superconductivity and magnetic 

ordering of copper sublattices in YBa2Cu3-xFexO7-x ceramics. 

It is known that in superconducting ceramics YBa2Cu3O7-z with orthorhombic lattice as 

the oxygen content decreases, the transition temperature in superconducting state Tc decreases, 

and at z>0.6 superconductivity disappears, the lattice becomes tetragonal and at the same time, 

antiferromagnetic ordering of sublattices Cu (2) appears. The substitution in ceramics of 

YBa2Cu3O7 part of copper atoms by iron atoms (i.e., the formation of a solid solution of 

YBa2Cu3-xFexO7+y) is accompanied by similar effects: as x increases, Tc decreases, at x>0.05 the 

orthorhombic lattice becomes tetragonal, at x>0.45 the superconductivity disappears. The most 

significant moment is the fact of coexistence in ceramics YBa2Cu3-xFexO7+y in the region of 

compositions 0.03 < x < 0.45 of superconductivity and magnetic ordering of iron atoms in 

copper nodes (the latter is established by Mossbauer spectroscopy on isotope 57Fe in a large 

number of works. However, it remains unclear whether the magnetic ordering of iron atoms in 

the YBa2Cu3-xFexO7+y lattice is related to the magnetic ordering of copper atoms. 

 

Key words: Mossbauer spectroscopy, electric field gradient, semiconductor ceramics, 

orthorhombic, copper node. 

 

It is known that in superconducting ceramics YBa2Cu3O7−z with orthorhombic lattice as 

oxygen content decreases, the temperature of transition in superconducting state Tc decreases, 

and at z>0.6 superconductivity disappears, the lattice becomes tetragonal and at the same time, 

antiferromagnetic ordering of the Cu (2) sublattices appears [1,2]. The substitution in ceramics of 

YBa2Cu3O7 part of copper atoms by iron atoms (i.e., the formation of a solid solution of 

YBa2Cu3−xFexO7+y) is accompanied by similar effects: as x increases, Tc decreases, at x>0.05 the 

orthorhombic lattice becomes tetragonal, at x>0.45 the superconductivity disappears [3]. The 

most significant moment is the fact of coexistence in the ceramic YBa2Cu3−xFexO7+y in the region 

of compositions 0.03 < x < 0.45 of superconductivity and magnetic ordering of iron atoms in 

copper nodes (the latter was established by Mossbauer spectroscopy on isotope 57Fe in a large 

number of papers [4-7]. However, it remains unclear whether the magnetic ordering of iron 

atoms in the YBa2Cu3-xFexO7+y lattice is related to the magnetic ordering of copper atoms (see, 

for example, [8]). 



To solve this problem, it seems promising to use emission Mossbauer spectroscopy on 

isotope 61Cu (61Ni): after the decay of the mother nucleus 61Cu, the Mossbauer probe 61Ni is 

formed in the copper node, whose nuclear parameters allow reliable recording of magnetic 

ordering in copper nodes [9]. Two pairs of samples were used for investigations: YBa2Cu3O6.96 

(orthorhombic modification, Tc = 92 K), YBa2Cu3O6.1 (tetragonal modification, Tc<4.2K) and 

YBa2Cu2.8Fe0.2O7.03 (tetragonal modification, Tc= 50 K), YBa2Cu2.5Fe0.5O7.18 (tetragonal 

modification, Tc<4.2K).. 

Samples of YBa2Cu3O6.96 and YBa2Cu3−xFexO7+y were prepared by high-temperature 

solid phase synthesis. Y2O3, CuO, Fe2O3 (enrichment by isotope 57Fe was 92 %) and BaCO3 

were used as components. After sintering at 900◦C for 20h in the air, the samples were annealed 

in an oxygen current at 920◦C for 70 "s with subsequent cooling at a rate of 5 K/min. The 

annealing of the sample YBa2Cu3O6.96 at 800◦C for 2 h with constant pumping resulted in 

YBa2Cu3O6.1. 

Samples were doped with 61Cu by diffusion annealing at 450◦C for 30 min in oxygen 

current (except for sample YBa2Cu3O6.1, which was doped by diffusion annealing at 650◦C for 

30 min during pumping). No changes in structure, Tc value or oxygen content were observed for 

control samples. According to [10], the described procedure guarantees that the 61Cu isotope 

enters the copper nodes of the lattice. 

The 61Cu (61Ni) Mossbauer emission spectra were shot at 80 and 4.2 K on an industrial 

spectrometer, the standard absorber was Ni0.86V0.14 with a surface density of 1500 mg/cm2. 

Typical spectra are shown in Fig. 1. 

In the Y system, copper atoms occupy two crystallography non-equivalent positions Cu 

(1) and Cu (2), populated as 1:2. In accordance with this, we represented the experimental 

Mossbauer spectra of 61Cu (61Ni) of the above ceramics as an overlay of two multiplets 

corresponding to the 61Ni2+ centers in Cu (1) and Cu (2) nodes. Each multiplet was described by 

a superposition of either five lines with relative intensities 10 : 4 : 1 : 6 : 9 (in the case of a pure 

quadrupole interaction), or twelve lines with relative intensities 10 : 4 : 1 : 6 : 6 : 3 : 3 : 6 : 6 : 1 : 

4 : 10 (in the case of the combined quadrupole and Zeeman interactions), and the position of the 

multiplet lines was determined as the difference in the eigenvalues 𝐸𝑚
𝐼 of the Hamiltonian of the 

combined superfine interaction of the excited and the main states 61Ni 

𝐸𝑚
𝐼 = 𝑚𝑔𝛽𝑁𝐻 + {𝑒𝑄𝑈𝑧𝑧 4𝐼(2𝐼 − 1)⁄ } × {3𝑚2 − 𝐼(𝐼 + 1)}{(3𝑐𝑜𝑠2𝜃 − 1) 2⁄ }, 

where I is the spin of the nucleus, H is the magnetic field on the nucleus, 𝑈𝑧𝑧is the main 

component of the electric field gradient (EFG) tensor on the nucleus, 𝜃– is the angle between the 

main axis of the EFG tensor and the direction of the magnetic field, 𝑚 is the magnetic quantum 



number, 𝑄 is the quadrupole moment of the nucleus, g is the nuclear g is factor, 𝛽𝑁 is the nuclear 

magneton. The above formula is valid for the axially symmetric EFG tensor both for 𝑔𝐻 ≫

𝑒𝑄𝑈𝑧𝑧, and for 𝐻 = 0 (but in the latter case we should take (𝜃 = 0°). 

The computational spectrum was adjusted to the experimental method of least squares, 

and the fitting parameters were not the parameters of individual lines, but the Hamiltonian 

parameters 𝐻and𝑈𝑧𝑧{(3𝑐𝑜𝑠2𝜃 − 1) 2⁄ }, as well as the positions of the centers of gravity of the 

multiplets. Since no isomer shift is observed in the Mossbauer 61Ni spectra [11], we made sure 

that the center of gravity of the calculated multiplet does not deviate from zero speed by more 

than ±0.05 𝑚𝑚/𝑠. 

Mossbauer spectrum 61Cu (61Ni) of superconducting ceramic YBa2Cu3O6.96 is a 

superposition of two quadrupole multiplets corresponding to the centers of gravity of 61Ni (1) 

and 61Ni (2). Fig. 1 indicates the positions of the components of the corresponding multiplets and 

their relative intensities. The ratio of areas under the spectra 61Ni (2) and 61Ni (1) P=1.95 (5), 

which is close to the population ratio of nodes Cu (2) and Cu (1). The obtained parameters of the 

spectra are as follows: 𝑒𝑄𝑈𝑧𝑧 = 32 (2) MHz for centers 61Ni (1) and 𝑒𝑄𝑈𝑧𝑧 = −54 (2) MHz for 

spectra 61Ni (2) (here Q is the quadrupole moment of the 61Ni core in the main state). 

Mossbauer spectrum of 61Cu (61Ni) semiconductor ceramics YBa2Cu3O6.1(Fig. 1, b) is a 

superposition of a quadrupole multiplets corresponding to the 61Ni2+ nodes Cu (1) (|𝑒𝑄𝑈𝑧𝑧| <

30𝑀𝐻𝑧), and a multiplate corresponding to the 61Ni2+ nodes Cu (2), And the fine structure of the 

last spectrum is obliged by the origin to the combined superfine (Zeeman and electric 

quadrupole) interaction (𝑒𝑄𝑈𝑧𝑧 = −48 (3) MHz, 𝐻 = 85 (5) kOe, 𝜃 = 90 (10)°). The ratio of 

areas under the spectra 61Ni (2) and 61Ni (1) remains equal to the ratio of the population of nodes 

Cu (2) and Cu (1) in the lattice YBa2Cu3O7 (P=1.97 (5)). The spectra in Fig. 1 illustrate the 

possibilities of Mossbauer emission spectroscopy at the isotope 61Cu (61Ni) to observe the 

magnetic ordering of the copper sublattice of YBa2Cu3O7−z ceramics with a decrease in oxygen 

content. 



 

 

Fig.1. Mossbauer emission spectra of  61Cu (61Ni) at 80 K for YBa2Cu3O6.96 (a) and 

YBa2Cu3O6.1 (b) ceramics. The position of multiplets components corresponding to 61Ni2+ 

centers in Cu (1) (I) and Cu (2) (II) nodes is indicated. 

 

Fig.2. Mossbauer emission spectra of  61Cu (61Ni) at 4.2K for YBa2Cu2.8Fe0.2O7.03 (a) and 

YBa2Cu2.5Fe0.5O7.18 (b) ceramics. For spectrum a, the position of the multiplets components 

corresponding to centers 61Ni2+ in nodes Cu (1) (I) and Cu (2) (II) is indicated. 

 

The Mossbauer spectrum of 61Cu (61Ni) superconducting ceramics YBa2Cu2.8Fe0.2O7.03 is 

a superposition of two quadrupole multiplets (Fig. 2, a), whose parameters are close to the 

parameters of the corresponding spectra of the ceramics YBa2Cu3O6.96, although the ratio of 

areas under the 61Ni (2) and 61Ni (1) spectra differs significantly from the expected value (P=4.0 

(4)). This is obviously due both to a decrease in the proportion of Cu (1) centers (due to partial 

substitution of a part of Cu (1) nodes by iron impurity atoms) and to the influence of iron 

impurity atoms on the parameters of the Mossbauer 61Ni spectra (which decreases the proportion 

of the undisturbed spectrum from 61Ni (1) atoms). 

For ceramics YBa2Cu2.5Fe0.5O7.18, in which superconductivity is suppressed, a Zeeman 

splitting is observed in the 61Cu (61Ni) Mossbauer spectra (Fig. 2, b). Unfortunately, the 

resolution of the last ceramics spectra was insufficient for the extraction of components 

corresponding to 61Ni2+ centers in Cu (1) and Cu (2) from experimental spectra. So, as in the case 

of ceramics YBa2Cu3O7−z, for ceramics YBa2Cu3−xFexO7+y there is an obvious correlation 



between the appearance of magnetic ordering of one of the copper sublattice and disappearance 

of the superconductivity phenomenon. 

For ceramics YBa2Cu2.8Fe0.2O7.03 the Mossbauer spectra 57Fe were also measured (57Co 

in palladium was used as a standard source). In agreement with the literature data at T<50 K, the 

spectra are poorly resolved Zeeman multiplets corresponding to impurity iron atoms in nodes Cu 

(1) in the "spin glass" state. Thus, we must state that there is no correlation between the magnetic 

ordering of impurity iron atoms in sublattice Cu (1) and the magnetic ordering of copper 

sublattice ceramics YBa2Cu2.8Fe0.2O7.03. However, the increase in iron concentration (transition 

to YBa2Cu2.5Fe0.5O7.18) is accompanied by both the complete suppression of superconductivity 

and the appearance of magnetic ordering of copper sublattice. Since in the latter ceramics a part 

of iron atoms is stabilized in the Cu (2) sublattice, it is obvious that the appearance of the 

magnetic ordering of the copper sublattice should be associated with these iron atoms. 
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