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УДК 621:681:013.7 

 

APPROXIMATION MODEL OF A TYPICAL MECHANICAL OBJECT WITH 

DISTRIBUTED PARAMETERS 

 

A.F. Verlan (Pukhov Institute for Modelling in Energy Engineering), M.V. Sagatov, D.K. 

Karimova, U.S. Fayzullaev (Tashkent State Technical University) 

 

Annotation. The article discusses the method of approximation transformations for the study 

of a typical mechanical object with distributed parameters. A mathematical description of an object 

with distributed parameters, which is given in the form of a partial differential equation, and their 

structural models are considered. An approximation model has been obtained with a number of 

unique properties that have proven useful in the construction of structural models of 

electromechanical systems. 

 

Keywords: approximation, mathematical model, electromechanical systems, partial 

differential equations 

 

Introduction. In connection with the increasing complexity of the dynamic systems under 

study, and hence the complexity of their models, the methods of nonequivalent (approximate) 

transformations of mathematical descriptions of systems [1] become significant. The basis of these 

methods is the ability to simplify the initial dynamic model by identifying and eliminating those 

components that weakly (based on some criterion) affect the simulation result [2]. 

A typical mechanical distributed link of many actuators of electromechanical systems is a 

rod that experiences various types of deformation. For the mathematical description of its dynamic 

properties, as a rule, a model is used in the form of a partial differential equation. In computer 

modeling of distributed objects, the mathematical models of which are represented in the form of 

partial differential equations, it becomes necessary to reduce them to a form that allows the use of 

standard operating units in modeling software. Since the distributed object is infinite-dimensional, it 

is possible to describe it with a finite-dimensional approximation model by discretizing the original 

equation by the spatial coordinate. 

Consider a mathematical description of an object with distributed parameters, which is given 

in a rectangular region G, with a limitG{α < x < β; y0 < y < y0 + l}  in the form of a partial 

differential equation 

  𝑎(𝑥, 𝑡) 𝜕2𝑢𝜕𝑡2 − 𝑏(𝑥, 𝑡) 𝜕2𝑢𝜕𝑥2 + 𝑐(𝑥, 𝑡) 𝜕𝑢𝜕𝑡 + 𝑑(𝑥, 𝑡)𝑢 = 𝑓(𝑥, 𝑡),                    𝑎, 𝑏 > 0(1) 
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whereφ0(t), φl(t), ψ0(x), ψT (x) — predefined functions. 

Applying the direct method to equations (1), (2) we obtain a system of n ordinary second-

order linear differential equations 
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wherexk = x0 + kh,  (k = 0, 1, 2, ..., n), 
1

l
h

n



,   xk(t) = u(t, xk).  

Neglecting the terms O(h
2
) in (3) and denoting by Uk(t) the approximate values of the 

solution u (t, x) on the line x = xkto determine them, we obtain the system of equations 
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Using the boundary conditions on G, we have: 
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So, the obtained model in the form of a system of differential equations (4) with conditions 

(5) approximates up to O(h
2
) differential equation (1) with boundary conditions (2). It should be 

noted that using the direct method, in fact, the initial model is decomposed into n structural 

elements, each of which implements a second-order differential equation. For the numerical 

implementation of the obtained approximation model, the simulink model shown in Fig.1. 

 

 
Fig.1. Structural implementation of the approximation model (4) 

 

Thus, based on the performed decomposition, structural models of objects with distributed 

parameters are constructed. It should be borne in mind that replacing a model with an infinite 

number of degrees of freedom with a finite-dimensional one leads to differences in the values of 

their natural frequencies. To assess the accuracy of the approximation model, we use the definition 

of the difference in the natural frequencies of the original and approximation models. 

Let us estimate the accuracy of the approximation when replacing a partial differential 

equation with a system of second-order differential equations, which corresponds to replacing a 

homogeneous linear extended object with longitudinal deformation by a multi-mass system. The 

natural frequencies of a homogeneous distributed object are found by solving the following 

problem: 
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whereu – is the offset of the cross section of the distributed object; 
2

0

Es Esl
a

M
  ; 0M  

— total mass of the distributed object. 

The frequencies are found from the ratio 

 , 1,2,
q

aq
q q

l

    , (6) 



3 

 

whereq – is the harmonic number; 0

0

k

M
  ; 0

Es
k

l
  — total stiffness of the distributed 

object. 

As an estimate of the approximation accuracy, we take the magnitude of the difference in 

the natural frequencies of equivalent objects with distributed and concentrated parameters. To move 

to a multi-mass model, we divide the object into n identical sections. The mass of each section 

0i
m M n  will be concentrated in its middle in the form of an absolutely rigid body. The 

stiffness between adjacent sections is taken equal to the stiffness of sections 

, 1 0, 1,2, , 1
i i

k nk i n    . In the future, to simplify the notation, we omit the indices for , 1i i
k   

and i
m  

To determine the eigenfrequencies of a multi-mass system, we denote the relative 

displacement of neighboring masses by i
u . Then, taking into account (4), we can write n - 1 

equations 
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We write the characteristic equation of this system 
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Disclosing the determinant  1n
  in powers of 2

 and finding the eigenfrequencies 

requires even a relatively small order of the determinant significant computational work. To reduce 

the calculations and find the natural frequencies without solving the equation of the (n - 1)th order 

with respect to 2
, we can use the method of generating functions. 
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Opening the determinant of the elements of the first row and the algebraic complement to 

the term –1 in the first row of the elements of the first column, we obtain
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then equation (10) can be written as follows: 
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Solving this equation with respect to G (z) and using (9), we find the generating function
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Since in the characteristic equation the diagonal terms are always positive, denoting
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We develop the last expression for the generating function in a power series in z: 
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The coefficients of this expansion are the desired n
 . Equation (7) for natural frequencies in 

the case of a mechanical multi-mass system according to (12) will have the form 
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frequencies of a system consisting of n masses are 
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With an increase in the number of concentrated masses, the low eigenfrequencies of a multi-

mass system with lumped parameters will approach the corresponding values of the 

eigenfrequencies of an object with distributed parameters: 
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The relative error of replacing an object with distributed parameters by a system with 

lumped parameters is 
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It follows that the error does not depend on the parameters of the object, but is determined 

only by the number of concentrated masses n and the harmonic number q. In fig. 2. The dependence 

of the relative error for various values of the harmonic number and the number of lumped masses 

when approximating by a multimass model is presented. 

 

 
Fig. 2. The dependence of the relative error on the harmonic number and the number of 

concentrated masses 

Thus, asking the approximation error or knowing the operating frequency zone of the entire 

system, when constructing the approximation model, one can determine from (13) the required 

number of differential equations of the system (the number of concentrated masses). 

The obtained approximation model has a number of unique properties that have been found 

useful in constructing structural models of electromechanical systems: reversibility (allows input 

influences and receive feedback at any point on a linearly extended object); dualism of parameters 

(input quantities can act as results); heterogeneity (various dependencies with respect to the spatial 

coordinate can be specified); multi-status (the ability to reproduce many states of an object, for 

example, changing boundary conditions); accessibility of parameters (the distribution of 

intermediate parameters by spatial coordinate is available, which, as a rule, are physical quantities, 

which makes it possible to evaluate, control, and control them); the possibility of operational 

clarification. 
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